Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto-and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in criticallysized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the α2β1 integrin receptor involved in osteogenesis. GFOGER coatings passively-adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost effective and facile approach translatable into a robust clinical therapy for musculoskeletal applications.
Engineered biointerfaces covered with biomimetic motifs, including short bioadhesive ligands, are a promising material-based strategy for tissue repair in regenerative medicine. Potentially useful coating molecules are ligands for the integrins, major extracellular matrix receptors that require both ligand binding and nanoscale clustering for maximal signaling efficiency. We prepared coatings consisting of well-defined multimer constructs with a precise number of recombinant fragments of fibronectin (monomer, dimer, tetramer, and pentamer) to assess how nanoscale ligand clustering affects integrin binding, stem cell responses, tissue healing, and biomaterial integration. Clinical-grade titanium was grafted with polymer brushes that presented monomers, dimers, trimers, or pentamers of the α5β1 integrin–specific fibronectin III (7 to 10) domain (FNIII7–10). Coatings consisting of trimers and pentamers enhanced integrin-mediated adhesion in vitro, osteogenic signaling, and differentiation in human mesenchymal stem cells more than did surfaces presenting monomers and dimers. Furthermore, ligand clustering promoted bone formation and functional integration of the implant into bone in rat tibiae. This study establishes that a material-based strategy in which implants are coated with clustered bioadhesive ligands can promote robust implant-tissue integration.
Biofunctionalized polyethylene glycol maleimide (PEG-MAL) hydrogels were engineered as a platform to deliver pancreatic islets to the small bowel mesentery and promote graft vascularization. VEGF, a potent stimulator of angiogenesis, was incorporated into the hydrogel to be released in an on-demand manner through enzymatic degradation. PEG-MAL hydrogel enabled extended in vivo release of VEGF. Isolated rat islets encapsulated in PEG-MAL hydrogels remained viable in culture and secreted insulin. Islets encapsulated in PEG-MAL matrix and transplanted to the small bowel mesentery of healthy rats grafted to the host tissue and revascularized by 4 weeks. Addition of VEGF release to the PEG-MAL matrix greatly augmented the vascularization response. These results establish PEG-MAL engineered matrices as a vascular-inductive cell delivery vehicle and warrant their further investigation as islet transplantation vehicles in diabetic animal models.
Neural electrodes are an important part of brain-machine interface devices that can restore functionality to patients with sensory and movement disorders. Chronically implanted neural electrodes induce an unfavorable tissue response which includes inflammation, scar formation, and neuronal cell death, eventually causing loss of electrode function. We developed a poly(ethylene glycol) hydrogel coating for neural electrodes with non-fouling characteristics, incorporated an anti-inflammatory agent, and engineered a stimulus-responsive degradable portion for on-demand release of the anti-inflammatory agent in response to inflammatory stimuli. This coating reduces in vitro glial cell adhesion, cell spreading, and cytokine release compared to uncoated controls. We also analyzed the in vivo tissue response using immunohistochemistry and microarray qRT-PCR. Although no differences were observed among coated and uncoated electrodes for inflammatory cell markers, lower IgG penetration into the tissue around PEG+IL-1Ra coated electrodes indicates an improvement in blood-brain barrier integrity. Gene expression analysis showed higher expression of IL-6 and MMP-2 around PEG+IL-1Ra samples, as well as an increase in CNTF expression, an important marker for neuronal survival. Importantly, increased neuronal survival around coated electrodes compared to uncoated controls was observed. Collectively, these results indicate promising findings for an engineered coating to increase neuronal survival and improve tissue response around implanted neural electrodes.
Implant-associated inflammation is a major cause for the reduced performance/lifetime and failure of numerous medical devices. Therefore, the ability to non-invasively and quantitatively monitor implant-associated inflammation is critically important. Here we show that implant-associated inflammation can be imaged via fluorescence imaging using near-infrared hydrocyanine dyes delivered either locally or intravenously in living mice. This imaging strategy allowed quantitative longitudinal monitoring of inflammation by detecting reactive oxygen species (ROS) released by inflammatory cells in response to implanted poly(ethylene terephthalate) (PET) disks or injected poly (lactic-co-glycolic acid) (PLGA) microparticles, and exhibited a strong correlation to conventional analysis of inflammation. Furthermore, modulation of inflammatory responses via controlled release of the anti-inflammatory agent dexamethasone was detected using this sensitive imaging approach. Thus, hydrocyanine-based fluorescence imaging of ROS could serve as a surrogate measure for monitoring implant-associated inflammation as well as evaluating the efficacy of therapeutic approaches to modulate host responses to implanted medical devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.