Rats not only avoid ingesting a substance associated with LiCl toxicosis, but they display rejection reflexes (e.g., gapes) to its taste; this latter response is thought to reflect disgust or taste aversion . Prior work has shown that rats also avoid consuming foods/fluids associated with other adverse gastrointestinal (GI) effects like lactose indigestion but without the concomitant change in oromotor responses (taste reactivity; TR) indicative of aversion. Because of interpretive limitations of the methods used in those studies, we revisited the taste aversion-avoidance distinction with a design that minimized non-treatment differences among groups. Effects on intake and preference (Experiments 1a, 1b, and 2), as well as consummatory (TR, Experiment 1a and 1b) and appetitive (Progressive Ratio, Experiment 2) behaviors to the taste stimulus were assessed after training. In both experiments, rats were trained to associate 0.2% saccharin (CS) with intraduodenal infusions of LiCl, Lactose, or NaCl control. Rats trained with 18% lactose, 0.3 and 1.5 mEq/kg dose of LiCl subsequently avoided the taste CS in post-training single-bottle intake tests and two-bottle choice tests. However, only those trained with 1.5 mEq/kg LiCl displayed post-conditioning increases in taste CS-elicited aversive TR (Experiment 1a and 1b). This dose of LiCl also led to reductions in breakpoint for saccharin. The fact that conditioned avoidance is not always accompanied by changes in other common appetitive and/or consummatory indices of ingestive motivation further supports a functional dissociation between these processes, and highlights the intricacies of visceral influences on taste-guided ingestive motivation.
Hypothalamic orexin neurons project to numerous brain areas, including the ventral tegmental area (VTA), which is involved in motivation and food-seeking behavior. Here we address how exogenously administered orexin-A and endogenous orexin 1 receptor (OX1R) activation in the VTA affects feeding behavior. We hypothesized that orexin-A and OX1R antagonist SB334867 delivered to the VTA, at doses that were subthreshold for effect when injected into the ventricle, would affect intake of palatable foods in multiple test situations. We first used a hedonic feeding model in which satiated rats selectively consume a high-fat diet (HFD). Intra-VTA orexin-A stimulated additional consumption of chow and increased HFD intake in this model. In ad libitum-fed rats given daily 30-min test sessions, intra-VTA orexin-A also increased intake of HFD and 0.1 M sucrose. Further analysis of licking patterns revealed that that VTA orexin-A increased meal size and licking burst size only toward the end of the meal. Consistent with this finding, a subthreshold dose of VTA orexin-A prevented intake suppression induced by gastrointestinal nutrient infusion. Surprisingly, intra-VTA orexin-A had no effect on operant responding for sucrose pellets on a progressive ratio schedule of reinforcement. A role for endogenous VTA OX1R stimulation is supported by our finding that bilateral VTA injection of the selective OX1R antagonist SB334867 suppressed 0.1 M sucrose intake. Together, our data suggest that OX1R activity in the VTA facilitates food intake, potentially by counteracting postingestive negative feedback that would normally suppress feeding later in a meal.
In rodents, Roux-en-Y gastric bypass (RYGB) decreases intake of, and preference for, foods or fluids that are high in sugar. Whether these surgically induced changes are due to decreases in the palatability of sugar stimuli is controversial. We used RYGB and sham-operated (SHAM) female rats to test the influence of prolonged ingestive experience with sugar solutions on the motivational potency of these stimuli to drive licking in brief-access (BA) tests. In experiment 1, RYGB attenuated intake of, and caloric preference for, 0.3 M sucrose during five consecutive, 46-h two-bottle tests (TBTs; sucrose). A second series of TBTs (5 consecutive, 46-h tests) with 1.0 M sucrose revealed similar results, except fluid preference for 1.0 M sucrose also significantly decreased. Before, between, and after the two series of TBTs, two sessions of BA tests (30 min; 10-s trials) with an array of sucrose concentrations (0 and 0.01–1.0 M) were conducted. Concentration-dependent licking and overall trial initiation did not differ between surgical groups in any test. In a similar experimental design in a second cohort of female rats, 0.6 and 2.0 M glucose (isocaloric with sucrose concentrations in experiment 1) were used in the TBTs; 0 and 0.06-2.0 M glucose were used in the BA tests. Outcomes were similar to those for experiment 1, except RYGB rats initiated fewer trials during the BA tests. Although RYGB profoundly affected intake of, and caloric preference for, sugar solutions and, with high concentrations, fluid preference, RYGB never influenced the motivational potency of sucrose or glucose to drive concentration-dependent licking in BA tests.
Liraglutide, a Glucagon-Like Peptide 1 (GLP-1) receptor agonist, is used as a treatment for Type 2 Diabetes Mellitus and obesity because it improves glycemia and decreases food intake. Here, we tested whether chronic activation of the GLP-1 receptor system with liraglutide would induce decreases in intake accompanied by changes in proportional food or macronutrient intake similar to those seen following RYGB in rats when a variety of palatable food options are available. A “cafeteria diet” was used that included: laboratory rodent chow, refried beans (low-fat/low-sugar), low-fat yogurt (low-fat/high-sugar), peanut butter (high-fat/low-sugar) and sugar-fat whip (high-fat/high-sugar). Liraglutide (1 mg/kg daily, sc, n=6) induced significant reductions in body weight and total caloric intake compared to saline–injected control rats (n=6). Although access to a cafeteria diet induced increases in caloric intake in both groups relative to chow alone, liraglutide still effectively decreased intake compared with saline-injected rats suggesting that chronic GLP-1 activation competes with the energy density and palatability of available food options in modulating ingestive behavior. Even with the substantial effects on overall intake, liraglutide did not change food choice or relative macronutrient intake when compared to pre-treatment baseline. When drug treatment was discontinued, the liraglutide group increased caloric intake and rapidly gained body weight to match that of the saline group. These results demonstrate that, while liraglutide effectively decreases caloric intake and body weight in rats, it does not cause adjustments in relative macronutrient consumption. Our data also show that drug-induced decreases in intake and body weight are not maintained following termination of treatment.
Roux-en-Y gastric bypass (RYGB) in rats attenuates preference for, and intake of, sugar solutions. Additionally, maintenance on a high-fat diet (HFD) reportedly alters behavioral responsiveness to sucrose in rodents in short-term drinking tests. Due to the fact that the behavioral tests to date rely on the hedonic value of the stimulus to drive responsiveness, we sought to determine whether taste detection thresholds to sucrose and NaCl are affected by these manipulations as measured in an operant two-response signal detection paradigm. Female rats were maintained on HFD or chow for 10 weeks, at which point animals received either RYGB or SHAM surgery followed by a gel-based diet and then powdered chow. Upon recovery, half of the rats that were previously on HFD were switched permanently to chow, and the other rats were maintained on their presurgical diets (n = 5–9/diet condition x surgery group for behavioral testing). The rats were then trained and tested in a gustometer. There was a significant interaction between diet condition and surgery on NaCl threshold that was attributable to a lower value in RYGB vs. SHAM rats in the HFD condition, but this failed to survive a Bonferroni correction. Importantly, there were no effects of diet condition or surgery on sucrose thresholds. Additionally, although recent evidence suggests that maintenance on HFD alters taste bud number in the circumvallate papillae (CV) of mice, in a subset of rats, we did not find that diet significantly influenced taste pores in the anterior tongue or CV of female rats. These results suggest that any changes in sucrose responsiveness in intake/preference or hedonically oriented tests in rats as a function of HFD maintenance or RYGB are not attributable to alterations in taste sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.