We report here that electrospray ionization (ESI) of uranyl nitrate dissolved in a mixture of H2O and acetone causes the formation of doubly charged, gas-phase complexes containing UO2 2+ “solvated” by neutral ligands. Using mild conditions, the dominant species observed in the ESI mass spectrum contained the uranyl ion coordinated by five acetone ligands, consistent with proposed most-stable structures in the solution phase. However, chemical mass shift data, ion peak shapes, and a plot of fractional ion abundance versus ion desolvation temperature suggest that in the gas phase, and under the ion-trapping and ejection conditions imposed, complexes with five equatorial acetone ligands are less stable than those with four. Multiple-stage tandem mass spectrometry showed that uranyl-acetone complexes dissociate via the elimination of acetone ligands and through pathways that involve reactive collisions with adventitious H2O in the ion trap. At no point was complete removal of ligands to generate the UO2 2+ ion achieved. ESI was also used to generate complex ions of similar composition and ligand number but different charge state for an investigation of the influence of complex charge on the tendency to add ligands by gas-phase association reactions. We found that the addition of a fifth acetone molecule to complexes initially containing four equatorial ligands is more facile for the doubly charged species. The singly charged complex shows a significant back-reaction to eliminate the fifth ligand, suggesting an intrinsic difference in the preferred coordination number for the U(VI) and U(V) complexes in the gas phase.
Electrospray ionization was used to generate doubly charged complex ions composed of the uranyl ion and nitrile ligands. The complexes, with general formula [UO2(RCN)n]2+, n = 0-5 (where R=CH3-, CH3CH2-, or C6H5-), were isolated in an ion-trap mass spectrometer to probe intrinsic reactions with H2O. For these complexes, two general reaction pathways were observed: (a) the direct addition of one or more H2O ligands to the doubly charged complexes and (b) charge-reduction reactions. For the latter, the reactions produced uranyl hydroxide, [UO2OH], complexes via collisions with gas-phase H2O molecules and the elimination of protonated nitrile ligands.
Desferrioxamine (DEF) is a trihydroxamate siderophore typical of those produced by bacteria and fungi for the purpose of scavenging Fe(3+) from environments where the element is in short supply. Since this class of molecules has excellent chelating properties, reaction with metal contaminants such as actinide species can also occur. The complexes that are formed can be mobile in the environment. Because the natural environment is extremely diverse, strategies are needed for the identification of metal complexes in aqueous matrices having a high degree of chemical heterogeneity, and electrospray ionization mass spectrometry (ESI-MS) has been highly effective for the characterization of siderophore-metal complexes. In this study, ESI-MS of solutions containing DEF and either UO(2)(2+), Fe(3+) or Ca(2+) resulted in generation of abundant singly charged ions corresponding to [UO(2)(DEF - H)](+), [Fe(DEF - 2H)](+) and [Ca(DEF - H)](+). In addition, less abundant doubly charged ions were produced. Mass spectrometry/mass spectrometry (MS/MS) studies of collision-induced dissociation (CID) reactions of protonated DEF and metal-DEF complexes were contrasted and rationalized in terms of ligand structure. In all cases, the most abundant fragmentation reactions involved cleavage of the hydroxamate moieties, consistent with the idea that they are most actively involved with metal complexation. Singly charged complexes tended to be dominated by cleavage of a single hydroxamate, while competitive fragmentation between two hydroxamate moieties increased when the doubly charged complexes were considered. Rupture of amide bonds was also observed, but these were in general less significant than the hydroxamate fragmentations. Several lower abundance fragmentations were unique to the metal examined: abundant loss of H(2)O occurred only for the singly charged UO(2)(2+) complex. Further, NH(3) was eliminated only from the singly charged Fe(3+) complex; this and fragmentation of C-C and C-N bonds derived from neither the hydroxamate nor the amide groups suggested that Fe(3+) insertion reactions were competing with ligand complexation. In no experiments were coordinating solvent molecules observed, attached either to the intact complexes or to the fragment ions, which indicated that both intact DEF and its fragments were occupying all of the coordination sites around the metal centers. This conclusion was based on previous experiments that showed that undercoordinated UO(2)(2+) and Fe(3+) readily added H(2)O and methanol in the ESI quadrupole ion trap mass spectrometer that was used in this study.
The aim of this study was to investigate the dissociation patterns, and in particular the relative abundance of [b(3) + 17 + Cat](+), for peptides with C-termini designed to allow transfer of the -OH required to generate the product ion, but not necessarily as the most favored pathway. Working with the hypothesis that formation of a five-membered ring intermediate, including intramolecular nucleophilic attack by a carbonyl oxygen atom, is an important mechanistic step, several model peptides with general sequence AcFGGX were synthesized, metal cationized by electrospray ionization and subjected to collision-induced dissociation (CID). The amino acid at position X was one that either required a larger ring intermediate (beta-alanine, gamma-aminobutyric acid and epsilon-amino-n-caproic acid to generate six-, seven- or nine- membered rings, respectively) to transfer -OH, lacked a structural element required for nucleophilic attack (aminoethanol) or prohibited cyclization because of the inclusion of a rigid ring (p- and m-aminobenzoic acid). For Ag(+), Li(+) and Na(+) cationized peptides, our results show that amino acids requiring the adoption of larger ring intermediates suppressed the formation of [b(3) + 17 + Cat](+), while amino acids that prohibit cyclization eliminated the reaction pathway completely. Formation of [b(3) - 1 + Cat](+) from the alkali metal cationized versions was not a favorable process upon suppression or elimination of the [b(3) + 17 + Cat](+) pathway: the loss of H(2)O to form [M - H(2)O + Cat](+) was instead the dominant dissociation reaction observed. Multiple-stage dissociation experiments suggest that [M - H(2)O + Cat](+) is not [b(4) - 1 + Cat](+) arising from the loss of H(2)O from the C-terminus, but may instead be a species that forms via a mechanism involving the elimination of an oxygen atom from an amide group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.