Bacterial contamination of commercial fermentation cultures is a common and costly problem to the fuel ethanol industry. Antimicrobials such as virginiamycin (VIR) and penicillin (PEN) are frequently used to control contamination but there are little data available on the susceptibility of bacterial contaminants to these agents. A survey of bacterial contaminants from a wet-mill ethanol plant with no history of using antibiotics and a dry-grind facility that periodically doses with VIR found that the majority of contaminants were species of Lactobacillus. Thirty-seven isolates of Lactobacillus species from the wet-mill and 42 isolates from the dry-grind facility were tested for antimicrobial susceptibility using broth dilution and agar dilution methods. In general, the Lactobacillus isolates from the dry-grind plant had higher minimum inhibitory concentrations (MICs) for the tested agents than the isolates from the wet-mill facility. The MIC(90) for VIR was 4 microg/ml for the dry-grind isolates versus 0.25 microg/ml for the wet-mill isolates; and for PEN, the MIC(90)'s were >8 and 2 microg/ml for the dry-grind and wet-mill isolates, respectively. Sixteen Lactobacillus isolates from the dry-grind plant but none from the wet-mill possessed vatE, a gene that encodes a streptogramin acetyltransferase associated with resistance to virginiamycin. Despite decreased susceptibility to virginiamycin, most dry-grind isolates had MICs lower than the maximal recommended application rate of 6 ppm.
Lactobacillus buchneri strain NRRL B-30929 was isolated from a fuel ethanol production facility. This heterofermentative, facultative anaerobe can utilize xylose as a sole carbon source and tolerates up to 12% ethanol. Carbohydrate utilization (API, Biomerieux) and Phenotype Microarrays (PM, Biolog) analyses indicated that the strain is able to metabolize a broad spectrum of carbon sources including various monosaccharides (C5 and C6), disaccharides and oligosaccharides, with better rates under anaerobic conditions. In pH-controlled bioreactors, the bacterium consumed xylose and glucose simultaneously at high concentrations (125 g L(-1), pH 6.0). The major fermentation products were lactate (52 g L(-1)), acetate (26 g L(-1)) and ethanol (12 g L(-1)). The strain ferments glucose alone (pH 4.0) into lactate and ethanol with a molar ratio of 1.03:1. This strain will be further explored via genetic engineering for potential applications in biomass conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.