Emerging additive manufacturing techniques enable investigation of the effects of pore geometry on cell behavior and function. Here, we 3D print microporous hydrogel scaffolds to test how varying pore geometry, accomplished by manipulating the advancing angle between printed layers, affects the survival of ovarian follicles. 30° and 60° scaffolds provide corners that surround follicles on multiple sides while 90° scaffolds have an open porosity that limits follicle–scaffold interaction. As the amount of scaffold interaction increases, follicle spreading is limited and survival increases. Follicle-seeded scaffolds become highly vascularized and ovarian function is fully restored when implanted in surgically sterilized mice. Moreover, pups are born through natural mating and thrive through maternal lactation. These findings present an in vivo functional ovarian implant designed with 3D printing, and indicate that scaffold pore architecture is a critical variable in additively manufactured scaffold design for functional tissue engineering.
Covalent histone post-translational modifications such as acetylation, methylation, phosphorylation, and ubiquitylation play pivotal roles in regulating many cellular processes, including transcription, response to DNA damage, and epigenetic control. Although positive-acting post-translational modifications have been studied in Saccharomyces cerevisiae, histone modifications that are associated with transcriptional repression have not been shown to occur in this yeast. Here, we provide evidence that histone sumoylation negatively regulates transcription in S. cerevisiae. We show that all four core histones are sumoylated and identify specific sites of sumoylation in histones H2A, H2B, and H4. We demonstrate that histone sumoylation sites are involved directly in transcriptional repression. Further, while histone sumoylation occurs at all loci tested throughout the genome, slightly higher levels occur proximal to telomeres. We observe a dynamic interplay between histone sumoylation and either acetylation or ubiquitylation, where sumoylation serves as a potential block to these activating modifications. These results indicate that sumoylation is the first negative histone modification to be identified in S. cerevisiae and further suggest that sumoylation may serve as a general dynamic mark to oppose transcription.
Histone modifications play an important role in transcription. We previously studied histone H2B ubiquitylation on lysine 123 and subsequent deubiquitylation by SAGA-associated Ubp8. Unlike other histone modifications, both the addition and removal of ubiquitin are required for optimal transcription. Here we report that deubiquitylation of H2B is important for recruitment of a complex containing the kinase Ctk1, resulting in phosphorylation of the RNA polymerase II (Pol II) C-terminal domain (CTD), and for subsequent recruitment of the Set2 methyltransferase. We find that Ctk1 interacts with histones H2A and H2B, and that persistent H2B ubiquitylation disrupts these interactions. We further show that Ubp8 enters the GAL1 coding region through an interaction with Pol II. These findings reveal a mechanism by which H2B ubiquitylation acts as a barrier to Ctk1 association with active genes, while subsequent deubiquitylation by Ubp8 triggers Ctk1 recruitment at the appropriate point in activation.
Clinical interventions to preserve fertility and restore hormone levels in female patients with therapy-induced ovarian failure are insufficient, particularly for pediatric cancer patients. Laproscopic isolation of cortical ovarian tissue followed by cryopreservation with subsequent autotransplantation has temporarily restored fertility in at least 27 women who survived cancer, and aided in pubertal transition for one pediatric patient. However, reintroducing cancer cells through ovarian transplantation has been a major concern. Decellularization is a process of removing cellular material, while maintaining the organ skeleton of extracellular matrices (ECM). The ECM that remains could be stripped of cancer cells and reseeded with healthy ovarian cells. We tested whether a decellularized ovarian scaffold could be created, recellularized and transplanted to initiate puberty in mice. Bovine and human ovaries were decellularized, and the ovarian skeleton microstructures were characterized. Primary ovarian cells seeded onto decellularized scaffolds produced estradiol in vitro. Moreover, the recellularized grafts initiated puberty in mice that had been ovariectomized, providing data that could be used to drive future human transplants and have broader implications on the bioengineering of other organs with endocrine function.
Notch1 transactivates Notch3 to drive terminal differentiation in stratified squamous epithelia. Notch1 and other Notch receptor paralogs cooperate to act as a tumor suppressor in squamous cell carcinomas (SCCs). However, Notch1 can be stochastically activated to promote carcinogenesis in murine models of SCC. Activated form of Notch1 promotes xenograft tumor growth when expressed ectopically. Here, we demonstrate that Notch1 activation and epithelial–mesenchymal transition (EMT) are coupled to promote SCC tumor initiation in concert with transforming growth factor (TGF)-β present in the tumor microenvironment. We find that TGFβ activates the transcription factor ZEB1 to repress Notch3, thereby limiting terminal differentiation. Concurrently, TGFβ drives Notch1-mediated EMT to generate tumor initiating cells characterized by high CD44 expression. Moreover, Notch1 is activated in a small subset of SCC cells at the invasive tumor front and predicts for poor prognosis of esophageal SCC, shedding light upon the tumor promoting oncogenic aspect of Notch1 in SCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.