Tobacco smoke exposure dramatically alters DNA methylation in blood cells and may mediate smoking-associated complex diseases through effects on immune cell function. However, knowledge of smoking effects in specific leukocyte subtypes is limited. To better characterize smoking–associated methylation changes in whole blood and leukocyte subtypes, we used Illumina 450K arrays and Reduced Representation Bisulfite Sequencing (RRBS) to assess genome-wide DNA methylation. Differential methylation analysis in whole blood DNA from 172 smokers and 81 nonsmokers revealed 738 CpGs, including 616 previously unreported CpGs, genome-wide significantly associated with current smoking (p <1.2x10-7, Bonferroni correction). Several CpGs (MTSS1, NKX6-2, BTG2) were associated with smoking duration among heavy smokers (>22 cigarettes/day, n = 86) which might relate to long-term heavy-smoking pathology. In purified leukocyte subtypes from an independent group of 20 smokers and 14 nonsmokers we further examined methylation and gene expression for selected genes among CD14+ monocytes, CD15+ granulocytes, CD19+ B cells, and CD2+ T cells. In 10 smokers and 10 nonsmokers we used RRBS to fine map differential methylation in CD4+ T cells, CD8+ T cells, CD14+, CD15+, CD19+, and CD56+ natural killer cells. Distinct cell-type differences in smoking-associated methylation and gene expression were identified. AHRR (cg05575921), ALPPL2 (cg21566642), GFI1 (cg09935388), IER3 (cg06126421) and F2RL3 (cg03636183) showed a distinct pattern of significant smoking-associated methylation differences across cell types: granulocytes> monocytes>> B cells. In contrast GPR15 (cg19859270) was highly significant in T and B cells and ITGAL (cg09099830) significant only in T cells. Numerous other CpGs displayed distinctive cell-type responses to tobacco smoke exposure that were not apparent in whole blood DNA. Assessing the overlap between these CpG sites and differential methylated regions (DMRs) with RRBS in 6 cell types, we confirmed cell-type specificity in the context of DMRs. We identified new CpGs associated with current smoking, pack-years, duration, and revealed unique profiles of smoking-associated DNA methylation and gene expression among immune cell types, providing potential clues to hematopoietic lineage-specific effects in disease etiology.
Nuclear factor- (erythroid-derived 2) like 2 (NFE2L2, NRF2) is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN) to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq) identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE) in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targets FTL and FTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup: AMBP, ABCB6, FECH, HRG-1 (SLC48A1), and TBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increased NQO1, AMBP, and TBXAS1 expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role for NRF2 in heme metabolism and erythropoiesis.
Aim: Hemophilia A is a genetic, chronic disorder classified by deficient or defective coagulation factor VIII (FVIII) that puts those affected at risk for spontaneous bleeding episodes, which lead to joint damage and chronic pain over time. Currently, most severe hemophilia A patients are treated with prophylactic FVIII, which requires costly and frequent infusions and lifelong adherence to medication. A gene therapy (valoctocogene roxaparvovec) is currently in development for the treatment of severe hemophilia A. This model assessed the potential cost-effectiveness of treating patients with valoctocogene roxaparvovec rather than prophylactic therapy. Materials and methods: We developed an individual-based, state-transition microsimulation model for assessing the likely cost-effectiveness of valoctocogene roxaparvovec compared to prophylactic FVIII. Men aged 30 with severe hemophilia A were modeled over a lifetime horizon, and costs were reported from the perspective of the United States health care system. Through microsimulation, patient-level heterogeneity was captured in starting weight, starting Pettersson score (PS), durability of valoctocogene roxaparvovec, and annual bleed rate (ABR). Results: The model projects that treatment with single-administration valoctocogene roxaparvovec would be cost-saving to people with hemophilia A at a price point comparable to other currently available gene therapy products due to its potential to reduce FVIII utilization, direct medical costs, lifetime bleeds, and accumulated joint damage. Limitations: The model relies upon evidence-based assumptions for clinical inputs due to limited data availability. Such uncertainty was mitigated by modeling heterogeneity across the population, specifically with regards to long-term gene therapy durability, lifetime bleed rates, and joint damage progression. Conclusion: Valoctocogene roxaparvovec was found to be cost-saving-on average by about $6.8 million per patient-and more effective than prophylactic therapy for treatment of hemophilia A. The comparative benefit of gene therapy was observed across a broad range of simulated patients that were representative of the real-world severe hemophilia A population.
Generalized and partial lipodystrophy are rare and complex diseases with progressive clinical and humanistic burdens stemming from selective absence of subcutaneous adipose tissue which causes reduced energy storage capacity and a deficiency of adipokines such as leptin. Treatment options were limited before leptin replacement therapy (metreleptin) became available. This retrospective study evaluates both clinical and humanistic consequences of the disease and treatment. Chart data were abstracted from a cohort of metreleptin-treated patients with generalized and partial lipodystrophy (n=112) treated at the US National Institutes of Health. To quantify the quality of life consequences of the lipodystrophy disease attributes recorded in chart data, a discrete choice experiment was completed in 6 countries (US, n=250; EU, n=750). Resulting utility decrements were used to estimate the quality adjusted life-year consequences of changes in lipodystrophy attribute prevalence before and after metreleptin. In addition to metabolic impairment, patients with generalized and partial lipodystrophy experienced a range of lipodystrophy consequences, including liver abnormality (94%), hyperphagia (79%), impaired physical appearance (77%), kidney abnormality (63%), reproductive dysfunction (80% of females of reproductive age), and pancreatitis (39%). Improvement was observed in these attributes following initiation of metreleptin. Quality adjusted life-year gains associated with 12 months of treatment with metreleptin were estimated at 0.313 for generalized and 0.117 for partial lipodystrophy, reducing the gap in quality of life between untreated lipodystrophy and perfect health by approximately 59% and 31%, respectively. This study demonstrates that metreleptin is associated with meaningful clinical and quality of life improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.