The brain is thought to sense gut stimuli only via the passive release of hormones.This is because no connection has been described between the vagus and the putative gut epithelial sensor cell鈥攖he enteroendocrine cell. However, these electrically excitable cells contain several features of epithelial transducers. Using a mouse model, we found that enteroendocrine cells synapse with vagal neurons to transduce gut luminal signals in milliseconds by using glutamate as a neurotransmitter. These synaptically connected enteroendocrine cells are referred to henceforth as neuropod cells. The neuroepithelial circuit they form connects the intestinal lumen to the brainstem in one synapse, opening a physical conduit for the brain to sense gut stimuli with the temporal precision and topographical resolution of a synapse.
Guided by gut sensory cues, humans and animals prefer nutritive sugars over non-caloric sweeteners, but how the gut steers such preferences remains unknown. In the intestine, neuropod cells synapse with vagal neurons to convey sugar stimuli to the brain within seconds. Here, we found that cholecystokinin (CCK)-labeled duodenal neuropod cells differentiate and transduce luminal stimuli from sweeteners and sugars to the vagus nerve using sweet taste receptors and sodium glucose transporters. The two stimulus types elicited distinct neural pathways: while sweetener stimulated purinergic neurotransmission, sugar stimulated glutamatergic neurotransmission. To probe the contribution of these cells to behavior, we developed optogenetics for the gut lumen by engineering a flexible fiberoptic. We showed that preference for sugar over sweetener in mice depends on neuropod cell glutamatergic signaling. By swiftly discerning the precise identity of nutrient stimuli, gut neuropod cells serve as the entry point to guide nutritive choices.
The stability and longevity of recordings obtained from intracortical microelectrodes continues to remain an area of concern for neural interfacing applications. The limited longevity of microelectrode performance has been associated with the integrity of the blood brain barrier (BBB) and the neuroinflammatory response to the microelectrode. Here, we report the investigation of an additive approach that targets both mechanical and chemical factors believed to contribute to chronic BBB instability and the neuroinflammatory response associated with implanted intracortical microelectrodes. The implants investigated were based on a mechanically adaptive, compliant nanocomposite (NC), which reduces the tissue response and tissue strain. This material was doped with various concentrations of the antioxidant resveratrol with the objective of local and rapid delivery. In vitro analysis of resveratrol release, antioxidant activity, and cytotoxicity suggested that a resveratrol content of 0.01% was optimal for in vivo assessment. Thus, probes made from the neat NC reference and probes containing resveratrol (NC Res) were implanted into the cortical tissue of rats for up to sixteen weeks. Histochemical analysis suggested that at three days post-implantation, neither materials nor therapeutic approaches (independently or in combination) could alter the initial wound healing response. However, at two weeks post-implantation, the NC Res implant showed a reduction in activated microglia/macrophages and improvement in neuron density at the tissue-implant interface when compared to the neat NC reference. However, sixteen weeks post-implantation, when the antioxidant was exhausted, NC Res and the neat NC reference exhibited similar tissue responses. The data show that NC Res provides short-term, short-lived benefits due to the antioxidant release, and a long-term reduction in neuroinflammation on account of is mechanical adaptive, compliant nature. Together, these results demonstrate that local delivery of resveratrol can provide an additive advantage by providing a consistent reduction in the tissue response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.