The Pacific Lamprey Entosphenus tridentatus, an anadromous fish native to the northern Pacific Ocean and bordering freshwater habitats, has recently experienced steep declines in abundance and range contractions along the West Coast of North America. During the early 1990s, Native American tribes recognized the declining numbers of lamprey and championed their importance. In 2012, 26 entities signed a conservation agreement to coordinate and implement restoration and research for Pacific Lamprey. Regional plans have identified numerous threats, monitoring needs, and strategies to conserve and restore Pacific Lamprey during their freshwater life stages. Prime among these are needs to improve lamprey passage, restore freshwater habitats, educate stakeholders, and implement lamprey‐specific research and management protocols. Key unknowns include range‐wide trends in status, population dynamics, population delineation, limiting factors, and marine influences. We synthesize these key unknowns, with a focus on the freshwater life stages of lamprey in the Columbia River basin.
Nonnative fishes have been increasingly implicated in the decline of native fishes in the Pacific Northwest. Smallmouth Bass Micropterus dolomieu were introduced into the Umpqua River in southwest Oregon in the early 1960s. The spread of Smallmouth Bass throughout the basin coincided with a decline in counts of upstream‐migrating Pacific Lampreys Entosphenus tridentatus. This suggested the potential for ecological interactions between Smallmouth Bass and Pacific Lampreys, as well as freshwater‐resident Western Brook Lampreys Lampetra richardsoni. To evaluate the potential effects of Smallmouth Bass on lampreys, we sampled diets of Smallmouth Bass and used bioenergetics models to estimate consumption of larval lampreys in a segment of Elk Creek, a tributary to the lower Umpqua River. We captured 303 unique Smallmouth Bass (mean: 197 mm and 136 g) via angling in July and September. We combined information on Smallmouth Bass diet and energy density with other variables (temperature, body size, growth, prey energy density) in a bioenergetics model to estimate consumption of larval lampreys. Larval lampreys were found in 6.2% of diet samples, and model estimates indicated that the Smallmouth Bass we captured consumed 925 larval lampreys in this 2‐month study period. When extrapolated to a population estimate of Smallmouth Bass in this segment, we estimated 1,911 larval lampreys were consumed between July and September. Although the precision of these estimates was low, this magnitude of consumption suggests that Smallmouth Bass may negatively affect larval lamprey populations. Received September 20, 2016; accepted March 31, 2017Published online June 6, 2017
Pacific Lamprey (Entosphenus tridentatus) are a native anadromous species that, like salmon, historically returned to spawn in large numbers in watersheds along the west coast of the United States (U.S.). Lamprey play a vital role in river ecosystems and are one of the oldest vertebrates that have persisted over time likely influencing the evolution of many aquatic species. Pacific Lamprey have declined in abundance and are restricted in distribution throughout Washington, Oregon, Idaho and California. A key uncertainty influencing Pacific Lamprey status is the impact of climate change. We modified the NatureServe Climate Change Vulnerability Index (CCVI) to accommodate climate predictions from the International Panel on Climate Change. Using downscaled information, we characterized changes in 15 rivers occupied by Pacific Lamprey in the western U.S. We evaluated this risk under Representative Concentration Pathways (RCP) 4.5 and 8.5 for two time periods (mid-century 2040-2069 and end-century 2070-2099). The CCVI scores generally increased when going from RCP 4.5 to RCP 8.5 in three Global Climate Models for both mid-century and end-century, which our analyses forecasts degraded stream temperature and hydrologic conditions under increasing greenhouse gas emissions. The geographically assessed results suggest that climate change impacts to Pacific Lamprey vulnerability are magnified in highly altered rivers. If we continue to observe greenhouse gas emission levels associated with the RCP 8.5, Pacific Lamprey will be at greater risk to climate change impacts. In order to mitigate the risk from climate change toward the end of the century, additional actions will need to be prioritized to rapidly reduce the impact of these threats such as increasing flow, creating backwater habitat, restoring riparian vegetation and reducing stream disturbances. The findings revealed the patterns of vulnerability for Pacific Lamprey across their U.S. range are informative for prioritizing river restoration actions when paired with regional implementation plans.
This study developed a spatially explicit framework to support the conservation of Western Brook Lamprey Lampetra richardsoni and Pacific Lamprey Entosphenus tridentatus in the Umpqua River basin, Oregon. This framework identified locations within the river network likely to support "potential burrowing habitat" for lamprey larvae based on geomorphic conditions and evaluated the overlap of potential burrowing habitat with water temperatures suitable for the nonnative, piscivorous Smallmouth Bass Micropterus dolomieu. The study also documented reach-scale factors that create heterogeneity in potential burrowing habitat to guide on-the-ground habitat restoration. Based on criteria for mean annual suspended sediment loads and channel slope, 18% of the Umpqua River network was classified as potential burrowing habitat. Existing mean August water temperatures of ≥20°C were suitable for Smallmouth Bass for 32% of the potential burrowing habitat. This percentage increased to 41% of the potential burrowing habitat using projected mean August water temperatures for year 2040, suggesting that water temperatures in the future will facilitate upstream expansion of Smallmouth Bass into the potential burrowing habitat. At finer spatial scales, potential burrowing habitat was influenced by channel features, such as large wood, pools, and local channel slope and width. These results provide an initial template for identifying locations in river networks likely to have potential burrowing habitat, considering the overlap between threats and lamprey habitats, and planning conservation actions to support native lampreys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.