We present a stochastic approach to modeling the dynamics of coexistence of prey and predator populations. It is assumed that the space of coexistence is explicitly subdivided in a grid of cells. Each cell can be occupied by only one individual of each species or can be empty. The system evolves in time according to a probabilistic cellular automaton composed by a set of local rules which describe interactions between species individuals and mimic the process of birth, death and predation. By performing computational simulations, we found that, depending on the values of the parameters of the model, the following states can be reached: a prey absorbing state and active states of two types. In one of them both species coexist in a stationary regime with population densities constant in time. The other kind of active state is characterized by local coupled time oscillations of prey and predator populations. We focus on the self-organized structures arising from spatio-temporal dynamics of the coexistence. We identify distinct spatial patterns of prey and predators and verify that they are intimally connected to the time coexistence behavior of the species. The occurrence of a prey percolating cluster on the spatial patterns of the active states is also examined.
Abstract.We analyze a probabilistic cellular automaton describing the dynamics of coexistence of a predator-prey system. The individuals of each species are localized over the sites of a lattice and the local stochastic updating rules are inspired on the processes of the Lotka-Volterra model. Two levels of mean-field approximations are set up. The simple approximation is equivalent to an extended patch model, a simple metapopulation model with patches colonized by prey, patches colonized by predators and empty patches. This approximation is capable of describing the limited available space for species occupancy. The pair approximation is moreover able to describe two types of coexistence of prey and predators: one where population densities are constant in time and another displaying self-sustained time-oscillations of the population densities. The oscillations are associated with limit cycles and arise through a Hopf bifurcation. They are stable against changes in the initial conditions and, in this sense, they differ from the Lotka-Volterra cycles which depend on initial conditions. In this respect, the present model is biologically more realistic than the Lotka-Volterra model.
We consider two probabilistic cellular automata to analyze the stochastic dynamics of a biological two-species system. We focus our attention on the characterization of the dynamic patterns exhibited by both models. Performing Monte Carlo simulations, we observe a time oscillating behavior that occurs at a local level.
We consider a probabilistic cellular automaton to analyze the stochastic dynamics of a predator-prey system. The local rules are Markovian and are based in the Lotka-Volterra model. The individuals of each species reside on the sites of a lattice and interact with an unsymmetrical neighborhood. We look for the effect of the space anisotropy in the characterization of the oscillations of the species population densities. Our study of the probabilistic cellular automaton is based on simple and pair mean-field approximations and explicitly takes into account spatial anisotropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.