Prediction of the fraction of dose absorbed from the intestine (Fa) in man is essential in the early drug discovery stage. In-vitro assays in Caco-2 and MDCK cells are routinely used for that purpose, and their predictive value has been reported. However, in-situ techniques might provide a more accurate estimation of Fa. In this study, we evaluated a single-pass intestinal-perfusion (SPIP) method in the rat for its use in the prediction of absorption in man and compared it with a previous report using cell-based assays. Effective permeability coefficients (Peff) were determined in rats for 14 compounds, and ranged from 0.043x 10(-4) cm s(-1) to 1.67 x 10(-4) cm s(-1). These values strongly correlated (r2 = 0.88) with reported Peff values for man. In addition, the Spearman rank correlation coefficient calculated for in-situ-derived Peff and absorption in man was 0.92 while for the previously tested in-vitro Caco-2 and MDCK systems vs absorption in man, the correlation coefficients were 0.61 and 0.59, respectively. SPIP provided a better prediction of human absorption than the cell-based assays. This method, although time consuming, could be used as a secondary test for studying the mechanisms governing the absorption of new compounds, and for predicting more accurately the fraction absorbed in man.
<div class="section abstract"><div class="htmlview paragraph">Over the last decades, a new class of reusable temporary fasteners having expanding mandrels have come to market. Their large-scale implementation has resulted in these fasteners being utilized in high shear stress environments resulting in the identification of several limitations. Parts shifting as a result of shear forces in the airframe assembly during temporary fastener installation or removal can cause current mandrel-based fasteners to become damaged and difficult to remove from the hole. Additionally, enhanced fastener shear resistance is desirable in very high shear forces environments.</div><div class="htmlview paragraph">This paper examines current mandrel based temporary fasteners while also examining two new concepts in reusable temporary fasteners that are specifically designed to offer mitigations to the aforementioned limitations.</div></div>
This quantitative research is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in Georgia Educational Researcher by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.