SUMOylation is a reversible post-translational modification that regulates protein function through covalent attachment of small ubiquitin-like modifier (SUMO) proteins. The process of SUMOylating proteins involves an enzymatic cascade, the first step of which entails the activation of a SUMO protein through an ATP-dependent process catalyzed by SUMO-activating enzyme (SAE). Here, we describe the identification of TAK-981, a mechanism-based inhibitor of SAE which forms a SUMO−TAK-981 adduct as the inhibitory species within the enzyme catalytic site. Optimization of selectivity against related enzymes as well as enhancement of mean residence time of the adduct were critical to the identification of compounds with potent cellular pathway inhibition and ultimately a prolonged pharmacodynamic effect and efficacy in preclinical tumor models, culminating in the identification of the clinical molecule TAK-981.
The findings support the previously observed anti-inflammatory effects of ACE2 inhibition in gastrointestinal tissue and suggest that GL1001 may have therapeutic utility for inflammatory bowel disease.
During posttranslational processing to generate CCK 8, pro-cholecystokinin (CCK) undergoes endoproteolytic cleavage at three sites. Several studies using endocrine and neuronal tumor cells in culture and recombinant enzymes and synthetic substrates in vitro have pointed to the subtilisin/kexin-like enzymes prohormone convertase (PC) 1, PC2, and PC5 as potential candidates for these endoproteolytic cleavages. In these experimental models, they all appear to be able to cleave pro-CCK to make the correct products. One rodent model has provided information about the role of PC2. PC2 knockout mouse brains had less CCK 8 than wild-type, although a substantial amount of CCK was still present. The degree to which CCK levels were reduced in these mice was regionally specific. These data indicated that PC2 is important for normal production of CCK but that it is not the only endoprotease that is involved in CCK processing. To evaluate whether PC1 and PC5 are possible candidates for the other enzymes involved in CCK processing, the distribution of PC1, PC2, and PC5 mRNA was studied in rat brain. Their colocalization with CCK mRNA was examined using double-label in situ hybridization. PC2 was the most abundant of these enzymes in terms of the intensity and number of cells labeled. It was widely colocalized with CCK. PC1 and PC5 mRNA-positive cells were less abundant, but they were also widely distributed and strongly colocalized with CCK in the cerebral cortex, hippocampus, amygdala, ventral tegmental area, and substantia nigra zona compacta. The degree of colocalization of the enzymes with CCK was regionally specific. It is clear that PC1 and PC5 are extensively colocalized with CCK and could be participating in CCK processing in the rat brain and may be able to substitute for PC2 in its absence. These three enzymes may represent a redundant system to ensure production of biologically active CCK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.