Genetic variation at the chromosome 9p21 risk locus promotes cardiovascular disease; however, it is unclear how or which proteins encoded at this locus contribute to disease. We have previously demonstrated that loss of one candidate gene at this locus, cyclin-dependent kinase inhibitor 2B (Cdkn2b), in mice promotes vascular SMC apoptosis and aneurysm progression. Here, we investigated the role of Cdnk2b in atherogenesis and found that in a mouse model of atherosclerosis, deletion of Cdnk2b promoted advanced development of atherosclerotic plaques composed of large necrotic cores. Furthermore, human carriers of the 9p21 risk allele had reduced expression of CDKN2B in atherosclerotic plaques, which was associated with impaired expression of calreticulin, a ligand required for activation of engulfment receptors on phagocytic cells. As a result of decreased calreticulin, CDKN2B-deficient apoptotic bodies were resistant to efferocytosis and not efficiently cleared by neighboring macrophages. These uncleared SMCs elicited a series of proatherogenic juxtacrine responses associated with increased foam cell formation and inflammatory cytokine elaboration. The addition of exogenous calreticulin reversed defects associated with loss of Cdkn2b and normalized engulfment of Cdkn2b-deficient cells. Together, these data suggest that loss of CDKN2B promotes atherosclerosis by increasing the size and complexity of the lipid-laden necrotic core through impaired efferocytosis.
Objective Genome wide association studies have implicated allelic variation at 9p21.3 in multiple forms of vascular disease, including atherosclerotic coronary heart disease and abdominal aortic aneurysm. As for other genes at 9p21.3, human eQTL studies have associated expression of the tumor suppressor gene CDKN2B with the risk haplotype, but its potential role in vascular pathobiology remains unclear. Methods and Results Here we employed vascular injury models and found that Cdkn2b knockout mice displayed the expected increase in proliferation after injury, but developed reduced neointimal lesions and larger aortic aneurysms. In situ and in vitro studies suggested that these effects were due to increased smooth muscle cell apoptosis. Adoptive bone marrow transplant studies confirmed that the observed effects of Cdkn2b were mediated through intrinsic vascular cells and were not dependent on bone marrow-derived inflammatory cells. Mechanistic studies suggested that the observed increase in apoptosis was due to a reduction in MDM2 and an increase in p53 signaling, possibly due in part to compensation by other genes at the 9p21.3 locus. Dual inhibition of both Cdkn2b and p53 led to a reversal of the vascular phenotype in each model. Conclusions These results suggest that reduced CDKN2B expression and increased SMC apoptosis may be one mechanism underlying the 9p21.3 association with aneurysmal disease.
Rationale Genetic variation at the chromosome 9p21 cardiovascular risk locus has been associated with peripheral artery disease (PAD), but its mechanism remains unknown. Objective To determine whether this association is secondary to an increase in atherosclerosis, or is the result of a separate angiogenesis-related mechanism. Methods and Results Quantitative evaluation of human vascular samples revealed that carriers of the 9p21 risk allele possess a significantly higher burden of immature intraplaque microvessels than carriers of the ancestral allele, irrespective of lesion size or patient comorbidity. To determine whether aberrant angiogenesis also occurs under non-atherosclerotic conditions, we performed femoral artery ligation surgery in mice lacking the 9p21 candidate gene, Cdkn2b. These animals developed advanced hind-limb ischemia and digital auto-amputation, secondary to a defect in the capacity of the Cdkn2b-deficient smooth muscle cell (SMC) to support the developing neovessel. Microarray studies identified impaired TGFβ signaling in cultured CDKN2B-deficient cells, as well as TGFβ1 upregulation in the vasculature of 9p21 risk allele carriers. Molecular signaling studies indicated that loss of CDKN2B impairs the expression of the inhibitory factor, SMAD-7, which promotes downstream TGFβ activation. Ultimately, this manifests in the upregulation of a poorly studied effector molecule, TGFβ1-induced-1, which is a TGFβ-‘rheostat’ known to have antagonistic effects on the EC and SMC. Dual knockdown studies confirmed the reversibility of the proposed mechanism, in vitro. Conclusions These results suggest that loss of CDKN2B may not only promote cardiovascular disease through the development of atherosclerosis, but may also impair TGFβ signaling and hypoxic neovessel maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.