OBJECTIVEHeart failure is a major cause of mortality in diabetes and may be causally associated with altered metabolism. Recent reports indicate a role of inflammation in peripheral insulin resistance, but the impact of inflammation on cardiac metabolism is unknown. We investigated the effects of diet-induced obesity on cardiac inflammation and glucose metabolism in mice.RESEARCH DESIGN AND METHODSMale C57BL/6 mice were fed a high-fat diet (HFD) for 6 weeks, and heart samples were taken to measure insulin sensitivity, glucose metabolism, and inflammation. Heart samples were also examined following acute interleukin (IL)-6 or lipid infusion in C57BL/6 mice and in IL-6 knockout mice following an HFD.RESULTSDiet-induced obesity reduced cardiac glucose metabolism, GLUT, and AMP-activated protein kinase (AMPK) levels, and this was associated with increased levels of macrophages, toll-like receptor 4, suppressor of cytokine signaling 3 (SOCS3), and cytokines in heart. Acute physiological elevation of IL-6 suppressed glucose metabolism and caused insulin resistance by increasing SOCS3 and via SOCS3-mediated inhibition of insulin receptor substrate (IRS)-1 and possibly AMPK in heart. Diet-induced inflammation and defects in glucose metabolism were attenuated in IL-6 knockout mice, implicating the role of IL-6 in obesity-associated cardiac inflammation. Acute lipid infusion caused inflammation and raised local levels of macrophages, C-C motif chemokine receptor 2, SOCS3, and cytokines in heart. Lipid-induced cardiac inflammation suppressed AMPK, suggesting the role of lipid as a nutrient stress triggering inflammation.CONCLUSIONSOur findings that nutrient stress activates cardiac inflammation and that IL-6 suppresses myocardial glucose metabolism via inhibition of AMPK and IRS-1 underscore the important role of inflammation in the pathogenesis of diabetic heart.
Dietary consistency has been shown to influence cross-sectional area and fiber type composition of the masticatory muscles. However, little is known about the effects of dietary consistency on masticatory muscle fiber architecture. In this study, we explore the effects of dietary consistency on the internal architecture of rabbit masseter muscle. Because activity patterns of the rabbit chewing muscles show inter-and intramuscular heterogeneity, we evaluate if alterations in fiber architecture are homogeneous across various portions of the superficial masseter muscle. We compared masseter muscle fiber architecture between two groups of weanling rabbits raised on different diets for 105 days. One group was raised on a diet of ground rabbit pellets to model underuse of the masticatory complex, while the other group was fed a diet of intact pellets and hay blocks to model an overuse diet. In all portions of the superficial masseter, physiological cross-sectional areas (PCSAs) are greater in the overuse compared to underuse diet rabbits. Thus, the mechanical demands for larger muscle and bite forces associated with early and prolonged exposure to a tough diet are met by an increase in PCSA of the superficial masseter. The larger PCSA is due entirely to increased muscle mass, as the two rabbit groups show no differences in either fiber length or angle of pinnation. Thus, increasing pinnation angle is not a necessary biomechanical solution to improving muscle and bite force during growth. The change in PCSA but not fiber length suggests that variation in dietary consistency has an impact on maximum force production but not necessarily on excursion or contraction velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.