Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was estimated using the area under the receiver operating characteristic curve (AUC). The full cohort was stratified by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). A total of 384 patients (median age: 49 y/o) were included. Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone. AUCs estimated for the combined versus highest AUCs among single features were 0.81 (95% confidence interval [CI]: 0.76, 0.86) versus 0.79 (95% CI: 0.73, 0.85) in the full cohort, 0.83 (95% CI: 0.77, 0.92) versus 0.73 (95% CI: 0.61, 0.84) in HR-positive/HER2-negative, 0.88 (95% CI: 0.79, 0.97) versus 0.78 (95% CI: 0.63, 0.89) in HR-positive/HER2-positive, 0.83 (95% CI not available) versus 0.75 (95% CI: 0.46, 0.81) in HR-negative/HER2-positive, and 0.82 (95% CI: 0.74, 0.91) versus 0.75 (95% CI: 0.64, 0.83) in triple negatives. Multi-feature MRI analysis improved pCR prediction over analysis of any individual feature that we examined. Additionally, the improvements in prediction were more notable when analysis was conducted according to cancer subtype.
Patient breast density notification and radiologists' recommendations for supplemental screening with breast ultrasound increase patient utilization of automated screening breast ultrasound examinations.
The Cancer Imaging Archive (TCIA) hosts publicly available deidentified medical images of cancer from over 25 body sites and over 30,000 patients. Over 400 published studies have utilized freely available TCIA images. Images and metadata are available for download through a web interface or a REST API. Here, we present TCIApathfinder, an R client for the TCIA REST API. TCIApathfinder wraps API access in user-friendly R functions that can be called interactively within an R session or easily incorporated into scripts. Functions are provided to explore the contents of the large database and to download image files. TCIApathfinder provides easy access to TCIA resources in the highly popular R programming environment. TCIApathfinder is freely available under the MIT license as a package on CRAN (https://cran.r-project.org/web/packages/TCIApathfinder/index.html) and from https://github.com/pamelarussell/TCIApathfinder These findings present a new tool, TCIApathfinder, the first client for The Cancer Imaging Archive (TCIA) for use in the highly popular R computing environment, that will dramatically lower the barrier of access to the valuable tools in TCIA. .
SummaryThe Cancer Imaging Archive (TCIA) hosts publicly available de-identified medical images of cancer from over 25 body sites and over 30,000 patients. Over 400 published studies have utilized freely available TCIA images. Image series and metadata are available for download through a web interface or a REST API. We present TCIApathfinder, an R client for the TCIA REST API. TCIApathfinder wraps API access in user-friendly R functions that can be called within an R session or easily incorporated into scripts. Functions are provided to explore the contents of the large database and to download image files.
Availability and implementationTCIApathfinder is available under the MIT license as a package on CRAN (https://cran.r-project.org/web/packages/TCIApathfinder/index.html) and at https://github.com/pamelarussell/TCIApathfinder.
Contact
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.