Morphological evidence has indicated that hybridization and introgression are occurring between Carpobrotus edulis L., a nonindigenous, invasive species in California (Bolus), and its putative native congener, C. chilensis. The identification of allozyme markers has enabled us to quantify hybridization and the extent of introgression between these species. Samples from 20 individuals of each of five morphological types (both parent species and three hybrid phenotypes) were collected from 39 populations along the coast of California from the Mexico to Oregon borders. Ten enzyme systems revealed a total of 17 resolvable loci, eight of which were polymorphic for the genus. Five of the polymorphic loci easily differentiate C. edulis and C. chilensis. Allele frequencies among the morphologically defined types are consistent with estimations of allele frequency changes due to first- and second-generation backcrossing. In comparison to long-lived, herbaceous perennials and widespread species, C. edulis and intermediate types have more variation in their populations (P = 41.73, Ap = 2.11, Ho = 0.246, and P = 38.13, Ap = 2.06, Ho = 0.216, respectively) than C. chilensis (P = 11.76, Ap = 2.00, Ho = 0.082). Indirect estimates of gene flow indicate four of the five morphological types are outcrossing. Gene flow between previously allopatric species may have broad implications if it results in an increase in fitness; further experimentation is needed to determine the ultimate ecological consequences of this phenomenon and its possible threat to limited, remaining natural habitat in California.
Despite the commonality and study of hybridization in plants, there are few studies between invasive and noninvasive species that examine the genetic variability and gene flow of cytoplasmic DNA. We describe the phylogeographical structure of chloroplast DNA (cpDNA) variation within and among several interspecific populations of the putative native, Carpobrotus chilensis and the introduced, Carpobrotus edulis (Aizoaceae). These species co-occur throughout much of coastal California and form several 'geographical hybrid populations'. Two hundred and thirty-seven individuals were analysed for variation in an approximate 7.0 kb region of the chloroplast genome using PCR-RFLP (polymerase chain reaction - restriction fragment length polymorphism) data. Phylogenetic analyses and cpDNA population differentiation were conducted for all morphotypes. Historic geographical dispersion and the coefficient of ancestry of the haplotypes were determined using nested clade analyses. Two haplotypic groupings (I and II) were represented in C. chilensis and C. edulis, respectively. The variation in cpDNA data is in agreement with the previously reported allozyme and morphological data; this supports relatively limited variation and high population differentiation among C. chilensis and hybrids and more wide-ranging variation in C. edulis and C. edulis populations backcrossed with C. chilensis. C. chilensis disproportionately contributes to the creation of hybrids with the direction of gene flow from C. chilensis into C. edulis. The cpDNA data support C. chilensis as the maternal contributor to the hybrid populations.
We obtained a microsatellite‐enriched genomic library isolated from the tissue of a single columbine (Aquilegia sp.) plant taken from a southwestern USA natural population. The primers developed for these microsatellite loci performed consistently in polymerase chain reactions and yielded multiallelic genotypes with relatively high observed heterozygosities. We describe polymerase chain reaction primers and conditions to amplify 16 unique, codominant di‐, tri‐ and tetra‐nucleotide microsatellite DNA loci so that other population biology researchers using columbine natural populations as a model system may benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.