Purpose: Up to 30% of patients with breast cancer relapse after primary treatment. There are no sensitive and reliable tests to monitor these patients and detect distant metastases before overt recurrence. Here, we demonstrate the use of personalized circulating tumor DNA (ctDNA) profiling for detection of recurrence in breast cancer.Experimental Design: Forty-nine primary patients with breast cancer were recruited following surgery and adjuvant therapy. Plasma samples (n ¼ 208) were collected every 6 months for up to 4 years. Personalized assays targeting 16 variants selected from primary tumor whole-exome data were tested in serial plasma for the presence of ctDNA by ultradeep sequencing (average >100,000X).Results: Plasma ctDNA was detected ahead of clinical or radiologic relapse in 16 of the 18 relapsed patients (sensitivity of 89%); metastatic relapse was predicted with a lead time of up to 2 years (median, 8.9 months; range, 0.5-24.0 months). None of the 31 nonrelapsing patients were ctDNA-positive at any time point across 156 plasma samples (specificity of 100%). Of the two relapsed patients who were not detected in the study, the first had only a local recurrence, whereas the second patient had bone recurrence and had completed chemotherapy just 13 days prior to blood sampling.Conclusions: This study demonstrates that patientspecific ctDNA analysis can be a sensitive and specific approach for disease surveillance for patients with breast cancer. More importantly, earlier detection of up to 2 years provides a possible window for therapeutic intervention. Personalized profiling detects rising ctDNA ahead of clinical relapse. A-E, Plasma levels of ctDNA across serial plasma time points for five patients with breast cancer (one per panel). Mean VAFs are denoted by a dark blue circle, and solid lines represent the average VAF profile over time. The lead time is calculated as the time interval between clinical relapse (red triangle) and molecular relapse (blue triangle). CA 15-3 levels are graphed over time (teal circle), and the baseline levels (32 U/mL) are marked in light blue. F, Summary of percent VAF and number of targets detected at molecular and clinical relapse for all ctDNA-positive samples. Data are from 13 relapsed patients, excluding three patients with only one plasma time point. Coombes et al.
Si may play an important role in bone formation and connective tissue metabolism. Although biological interest in this element has recently increased, limited literature exists on the Si content of foods. To further our knowledge and understanding of the relationship between dietary Si and human health, a reliable food composition database, relevant for the UK population, is required. A total of 207 foods and beverages, commonly consumed in the UK, were analysed for Si content. Composite samples were analysed using inductively coupled plasma-optical emission spectrometry following microwave-assisted digestion with nitric acid and H 2 O 2 . The highest concentrations of Si were found in cereals and cereal products, especially less refined cereals and oat-based products. Fruit and vegetables were highly variable sources of Si with substantial amounts present in Kenyan beans, French beans, runner beans, spinach, dried fruit, bananas and red lentils, but undetectable amounts in tomatoes, oranges and onions. Of the beverages, beer, a macerated whole-grain cereal product, contained the greatest level of Si, whilst drinking water was a variable source with some mineral waters relatively high in Si. The present study provides a provisional database for the Si content of UK foods, which will allow the estimation of dietary intakes of Si in the UK population and investigation into the role of dietary Si in human health.
The intake of long-chain n-3 PUFA, including , is associated with a reduced risk of CVD. Schizochytrium sp. are an important primary source of DHA in the marine food chain but they also provide substantial quantities of the n-6 PUFA docosapentaenoic acid (22 : 5n-6; DPA). The effect of this oil on cardiovascular risk factors was evaluated using a double-blind randomised placebo-controlled parallel-design trial in thirty-nine men and forty women. Subjects received 4 g oil/d for 4 weeks; the active treatment provided 1·5 g DHA and 0·6 g DPA. Active treatment increased plasma concentrations of arachidonic acid, adrenic acid, DPA and DHA by 21, 11, 11 and 88 mg/l respectively and the proportions of DPA and DHA in erythrocyte phospholipids by 78 and 27 % respectively. Serum total, LDL-and HDL-cholesterol increased by 0·33 mmol/l (7·3 %), 0·26 mmol/l (10·4 %) and 0·14 mmol/l (9·0 %) compared with placebo (all P#0·001). Factor VII (FVII) coagulant activity increased by 12 % following active treatment (P¼ 0·006). There were no significant differences between treatments in LDL size, blood pressure, plasma glucose, serum C-reactive protein, plasma FVII antigen, FVII activated, fibrinogen, von Willebrand factor, tocopherol or carotenoid concentrations, plasminogen activator inhibitor-1, creatine kinase or troponin-I activities, haematology or liver function tests or self-reported adverse effects. Overall, the oil was well tolerated and did not adversely affect cardiovascular risk. Prospective cohort studies indicate that the intake of EPA (20 : 5n-3) and DHA (22 : 6n-3) derived from the consumption of oily fish is associated with a lower risk of fatal IHD (Albert et al. 1998;Hu et al. 2002) and stroke (Mozaffarian et al. 2005). A meta-analysis of secondary prevention trials of IHD concluded that an intake in the range of 0·7-1 g/d of a mixture of EPA and DHA decreased the incidence of sudden cardiac death (Bucher et al. 2002). This beneficial effect appeared to occur rapidly following dietary intervention (Marchioli et al. 2002), implying that it was mediated by a process that was amenable to short-term influences such as a decreased susceptibility of an atherosclerotic plaque to rupture or an amelioration of the consequences of plaque rupture such as thrombosis or ventricular fibrillation. It is currently uncertain whether EPA or DHA or both together are responsible for this protective effect. Besides elevated blood pressure and dyslipidaemia, several pro-inflammatory and haemostatic factors are known to predict the risk of cardiovascular events such as elevated C-reactive protein, fibrinogen and von Willebrand factor concentrations, and plasminogen activator type 1 (PAI-1) and factor VII coagulant (FVIIc) activities (Meade et al. 1993;Thompson et al. 1995;Cooper et al. 2000;Ridker et al. 2000). However, the effects of DHA in isolation from EPA on these risk factors are uncertain.DHA can be synthesised from linolenic acid (18 : 3n-3) in mammalian tissues but its formation is limited by feedback inhibition and by competiti...
BackgroundBreast cancer (BC) is the most common cancer in women, and despite the introduction of new screening programmes, therapies and monitoring technologies, there is still a need to develop more useful tests for monitoring treatment response and to inform clinical decision making.The purpose of this study was to compare circulating cell-free DNA (cfDNA) and circulating tumour cells (CTCs) with conventional breast cancer blood biomarkers (CA15-3 and alkaline phosphatase (AP)) as predictors of response to treatment and prognosis in patients with metastatic breast cancer (MBC).MethodsOne hundred ninety-four female patients with radiologically confirmed MBC were recruited to the study. Total cfDNA levels were determined by qPCR and compared with CELLSEARCH® CTC counts and CA15-3 and alkaline phosphatase (AP) values. Blood biomarker data were compared with conventional tumour markers, treatment(s) and response as assessed by RECIST and survival.Non-parametric statistical hypothesis tests were used to examine differences, correlation analysis and linear regression to determine correlation and to describe its effects, logistic regression and receiver operating characteristic curve (ROC curve) to estimate the strength of the relationship between biomarkers and clinical outcomes and value normalization against standard deviation to make biomarker values comparable. Kaplan–Meier estimator and Cox regression models were used to assess survival. Univariate and multivariate models were performed where appropriate.ResultsMultivariate analysis showed that both the amount of total cfDNA (p value = 0.024, HR = 1.199, CI = 1.024–1.405) and the number of CTCs (p value = 0.001, HR = 1.243, CI = 1.088–1.421) are predictors of overall survival (OS), whereas total cfDNA levels is the sole predictor for progression-free survival (PFS) (p value = 0.042, HR = 1.193, CI = 1.007–1.415) and disease response when comparing response to non-response to treatment (HR = 15.917, HR = 12.481 for univariate and multivariate analysis, respectively). Lastly, combined analysis of CTCs and cfDNA is more informative than the combination of two conventional biomarkers (CA15-3 and AP) for prediction of OS.ConclusionMeasurement of total cfDNA levels, which is a simpler and less expensive biomarker than CTC counts, is associated with PFS, OS and response in MBC, suggesting potential clinical application of a cheap and simple blood-based test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.