The membrane properties and morphological features of interneurons in the supratrigeminal area (SupV) were studied in rat brain slices using whole-cell patch clamp recording techniques. We classified three morphological types of neurons as fusiform, pyramidal, and multipolar and four physiological types of neurons according to their discharge pattern in response to a 1-sec depolarizing current pulse from -80 mV. Single-spike neurons responded with a single spike, phasic neurons showed an initial burst of spikes and were silent during the remainder of the stimulus, delayed-firing (DF) neurons exhibited a slow depolarization and delay to initial spike onset, and tonic (T) neurons showed maintained a discharge throughout the stimulus pulse. In a subpopulation of neurons (10%), membrane depolarization to around -44 mV produced a rhythmic burst discharge (RB) that was associated with voltage-dependent subthreshold membrane oscillations. Both these phenomena were blocked by the sodium channel blocker riluzole at a concentration that did not affect the fast transient spike. Low doses of 4-AP, which blocks low-threshold K+ currents, transformed bursting into low-frequency tonic discharge. In contrast, bursting occurred with exposure to cadium, a calcium-channel blocker. This suggests that persistent sodium currents and low-threshold K+ currents have a role in intrinsic burst generation. Importantly, RB cells were most often associated with multipolar neurons that exhibited either a DF or a T discharge. Thus, the SupV contains a variety of physiological cell types with unique morphologies and discharge characteristics. Intrinsic bursting neurons form a unique group in this region. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.