The U.S. Department of Energy National Energy Technology Laboratory funded this research collaboration effort between NextEnergy and the University of Michigan, who successfully designed, built, and tested a reformer system, which produced highquality syngas for use in SOFC and other applications, and a novel reactor system, which allowed for facile illumination of photocatalysts. Carbon and raw biomass gasification, sulfur tolerance of non-Platinum Group Metals (PGM) based (Ni/CeZrO 2 ) reforming catalysts, photocatalysis reactions based on TiO 2 , and mild pyrolysis of biomass in ionic liquids (ILs) were investigated at low and medium temperatures (primarily 450 to 850 °C) in an attempt to retain some structural value of the starting biomass. Despite a wide range of processes and feedstock composition, a literature survey showed that, gasifier products had narrow variation in composition, a restriction used to develop operating schemes for syngas cleanup. Three distinct reaction conditions were investigated: equilibrium, autothermal reforming of hydrocarbons, and the addition of O 2 and steam to match the final (C/H/O) composition.Initial results showed rapid and significant deactivation of Ni/CeZrO 2 catalysts upon introduction of thiophene, but both stable and unstable performance in the presence of sulfur were obtained.The key linkage appeared to be the hydrodesulfurization activity of the Ni reforming catalysts. For feed stoichiometries where high H 2 production was thermodynamically favored, stable, albeit lower, H 2 and CO production were obtained; but lower thermodynamic H 2 concentrations resulted in continued catalyst deactivation and eventual poisoning. High H 2 levels resulted in thiophene converting to H 2 S and S surface desorption, leading to stable performance; low H 2 levels resulted in unconverted S and loss in H 2 and CO production, as well as loss in thiophene conversion. Bimetallic catalysts did not outperform Ni-only catalysts, and small Ni particles were found to have lower activities under S-free conditions, but did show less effect of S on performance, in this study.Imidazolium-based ILs, choline chloride compounds and low-melting eutectics of metal nitrates were evaluated, and it was found that, ILs have some capacity to dissolve cellulose and show thermal stability to temperatures where pyrolysis begins, have no vapor pressure, (simplifying product recoveries), and can dissolve ionic metal salts, allowing for the potential of catalytic reactions on breakdown intermediates. Clear evidence of photoactive commercial TiO 2 was obtained, but in-house synthesis of photoactive TiO 2 proved difficult, as did fixed-bed gasification, primarily due to the challenge of removing the condensable products from the reaction zone quickly enough to prevent additional reaction. Further investigation into additional non-PGM catalysts and ILs is recommended as a follow-up to this work.iv
Lithium ion batteries are utilized in a range of applications including grid support and powering consumer electronics, medical devices, and electric vehicles. Advocacy for, as well as public and private investment in hybrid cars and electric vehicles has resulted in a surge in research and development (R&D) to create more powerful and cost effective lithium ion batteries. This high level of interest has also led to rapid expansion of battery manufacture capacity and has resulted in the overcapacity and fragmentation of the industry. Due to the disjointed quality of the lithium-ion battery industry, opportunities for collaboration and growth, resulting from numerous innovations throughout the supply chain, are overlooked. [1] Although range anxiety is often portrayed as the primary reason electric vehicle adoption is not growing more rapidly by the general population, the cost of vehicles is actually the larger issue. At present, the battery pack is the highest cost component driving the price of EVs. A year-long study was conducted by NextEnergy to obtain a better understanding of the size, scope, and supply chain dynamics of the lithium ion battery and next-generation energy storage systems industries. One major objective of the study was to better understand and define areas of opportunity for cost reduction, the results of which are presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.