In the Arctic Ocean, Pacific source water can be distinguished from Atlantic source water by nitrate‐phosphate concentration relationships, with Pacific water having higher phosphate concentrations relative to those of nitrate. Furthermore, Pacific water, originally from the inflow through Bering Strait, is clearly recognizable in the outflows of low‐salinity waters from the Arctic Ocean to the northern North Atlantic Ocean through the Canadian Arctic Archipelago and through Fram Strait. In the Canadian Arctic Archipelago, we observe that almost all of the waters flowing through Lancaster and Jones sounds, most of the water in the top 100 m in Smith Sound (containing the flow through Nares Strait), and possibly all waters in Hudson Bay contain no water of Atlantic origin. Significant amounts of Pacific water are also observed along the western coast of Baffin Bay, along the coast of Labrador, and above the 200‐m isobath of the Grand Banks. There is a clear signal of Pacific water flowing south through Fram Strait and along the east coast of Greenland extending at least as far south as Denmark Strait. Pacific water signature can be seen near the east coast of Greenland at 66°N, but not in data at 60°N. Temporal variability in the concentrations of Pacific water has been observed at several locations where multiple‐year observations are available.
[1] The floating ice shelf of Petermann glacier interacts directly with the ocean and is thought to lose at least 80% of its mass through basal melting. Based on three opportunistic ocean surveys in Petermann Fjord we describe the basic oceanography: the circulation at the fjord mouth, the hydrographic structure beneath the ice shelf, the oceanic heat delivered to the under-ice cavity, and the fate of the resulting melt water. The 1100 m deep fjord is separated from neighboring Hall Basin by a sill between 350 and 450 m deep. Fjord bottom waters are renewed by episodic spillover at the sill of Atlantic water from the Arctic. Glacial melt water appears on the northeast side of the fjord at depths between 200 m and that of the glacier's grounding line (about 500 m). The fjord circulation is fundamentally three-dimensional; satellite imagery and geostrophic calculations suggest a cyclonic gyre within the fjord mouth, with outflow on the northeast side. Tidal flows are similar in magnitude to the geostrophic flow. The oceanic heat flux into the fjord appears more than sufficient to account for the observed rate of basal melting. Cold, low-salinity water originating in the surface layer of Nares Strait in winter intrudes far under the ice. This may limit basal melting to the inland half of the shelf. The melt rate and long-term stability of Petermann ice shelf may depend on regional sea ice cover and fjord geometry, in addition to the supply of oceanic heat entering the fjord.
Dramatic changes have been observed in the Arctic over the last century. Many of these involve the storage and cycling of fresh water. On land, precipitation and river discharge, lake abundance and size, glacier area and volume, soil moisture, and a variety of permafrost characteristics have changed. In the ocean, sea ice thickness and areal coverage have decreased and water mass circulation patterns have shifted, changing freshwater pathways and sea ice cover dynamics. Precipitation onto the ocean surface has also changed. Such changes are expected to continue, and perhaps accelerate, in the coming century, enhanced by complex feedbacks between the oceanic, atmospheric, and terrestrial freshwater systems. Change to the arctic freshwater system heralds changes for our global physical and ecological environment as well as human activities in the Arctic. In this paper we review observed changes in the arctic freshwater system over the last century in terrestrial, atmospheric, and oceanic systems. KeywordsArctic, Freshwater, System, Changes, Impacts [1] Dramatic changes have been observed in the Arctic over the last century. Many of these involve the storage and cycling of fresh water. On land, precipitation and river discharge, lake abundance and size, glacier area and volume, soil moisture, and a variety of permafrost characteristics have changed. In the ocean, sea ice thickness and areal coverage have decreased and water mass circulation patterns have shifted, changing freshwater pathways and sea ice cover dynamics. Precipitation onto the ocean surface has also changed. Such changes are expected to continue, and perhaps accelerate, in the coming century, enhanced by complex feedbacks between the oceanic, atmospheric, and terrestrial freshwater systems. Change to the arctic freshwater system heralds changes for our global physical and ecological environment as well as human activities in the Arctic. In this paper we review observed changes in the arctic freshwater system over the last century in terrestrial, atmospheric, and oceanic systems.
and Ba profiles near the initial SHEBA site and, in 1997, we ran a section out to SHEBA. Resolving fresh water into runoff and ice reel't, we found a large background of Mackenzie River water with exceptional amounts in 1997 explaining much of the freshcuing at SHEBA. Ice melt went through a dramatic 4-6 m jump in the early 1990s coinciding with the atmospheric pressure field and sea-ice circulation becoming more cyclonic. The increase in sea-ice melt appears to be a thermal and mechanical response to a circulation regime shift. Should atmospheric circulation revert to the more anticyclonic mode, ice conditions can also be expected to revert although not necessarily to previous conditions.
[1] Hydrographic and tracer data from 2002 illustrate Atlantic water pathways and variability in the Mendeleev Ridge and Chukchi Borderland (CBLMR) region of the Arctic Ocean. Thermohaline double diffusive intrusions (zigzags) dominate both the Fram Strait (FSBW) and Barents Sea Branch Waters (BSBW) in the region. We show that details of the zigzags' temperature-salinity structure partially describe the water masses forming the intrusions. Furthermore, as confirmed by chemical tracers, the zigzags' peaks contain the least altered water, allowing assessment of the temporal history of the Atlantic waters. Whilst the FSBW shows the 1990s warming and then a slight cooling, the BSBW has continuously cooled and freshened over a similar time period. The newest boundary current waters are found west of the Mendeleev Ridge in 2002. Additionally, we show the zigzag structures can fingerprint various water masses, including the boundary current. Using this, tracer data and the advection of the 1990s warming, we conclude the strongly topographically steered boundary current, order 50 km wide and found between the 1500 m and 2500 m isobaths, crosses the Mendeleev Ridge north of 80°N, loops south around the Chukchi Abyssal Plain and north around the Chukchi Rise, with the 1990s warming having reached the northern (but not the southern) Northwind Ridge by 2002. Pacific waters influence the Atlantic layers near the shelf and over the Chukchi Rise. The Northwind Abyssal Plain is comparatively stagnant, being ventilated only slowly from the north. There is no evidence of significant boundary current flow through the Chukchi Gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.