Relapse to cocaine use after prolonged abstinence is an important clinical problem. This relapse is often induced by exposure to cues associated with cocaine use. To account for the persistent propensity for relapse, it has been suggested that cue-induced cocaine craving increases over the first several weeks of abstinence and remains high for extended periods. We and others identified an analogous phenomenon in rats that was termed 'incubation of cocaine craving': time-dependent increases in cue-induced cocaine-seeking over the first months after withdrawal from self-administered cocaine. Cocaine-seeking requires the activation of glutamate projections that excite receptors for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in the nucleus accumbens. Here we show that the number of synaptic AMPA receptors in the accumbens is increased after prolonged withdrawal from cocaine self-administration by the addition of new AMPA receptors lacking glutamate receptor 2 (GluR2). Furthermore, we show that these new receptors mediate the incubation of cocaine craving. Our results indicate that GluR2-lacking AMPA receptors could be a new target for drug development for the treatment of cocaine addiction. We propose that after prolonged withdrawal from cocaine, increased numbers of synaptic AMPA receptors combined with the higher conductance of GluR2-lacking AMPA receptors causes increased reactivity of accumbens neurons to cocaine-related cues, leading to an intensification of drug craving and relapse.
Chronic alcohol exposure can cause dramatic behavioral alterations, including increased anxiety-like behavior and depression. These alterations are proposed to be due in part to adaptations in the brain regions that regulate emotional behavior, including the bed nucleus of the stria terminalis (BNST), a principal output nucleus of the amygdala. However, to date there have been no studies that have examined the impact of in vivo alcohol exposure on synaptic function in the BNST. In order to better understand how alcohol can alter neuronal function, we examined the ability of in vivo alcohol exposure to alter glutamatergic transmission in the BNST using whole-cell voltage clamp recordings and biochemistry in brain slices obtained from C57Bl6 mice. Chronic intermittent, but not continuous, ethanol vapor exposure increased temporal summation of NMDA receptor (NMDAR) mediated EPSCs. Both electrophysiological and biochemical approaches suggest that this difference is not due to an alteration in glutamate release, but rather an increase in the levels of NR2B-containing NMDARs. Further, we found that ethanol modulation of NMDAR in the vBNST is altered following intermittent alcohol exposure. Our results support the hypothesis that NMDAR mediated synaptic transmission is sensitized at key synapses in the extended amygdala and thus may be a suitable target for manipulation of the behavioral deficits associated with acute withdrawal from chronic alcohol exposure.
Adolescence may be a period of vulnerability to drug addiction. In rats, elevated firing activity of ventral tegmental area (VTA) dopamine neurons predicts enhanced addiction liability. Our aim was to determine if dopamine neurons are more active in adolescents than in adults and to examine mechanisms underlying any age-related difference. VTA dopamine neurons fired faster in adolescents than in adults as measured with in vivo extracellular recordings. Dopamine neuron firing can be divided into nonbursting (single spikes) and bursting activity (clusters of high-frequency spikes). Nonbursting activity was higher in adolescents compared with adults. Frequency of burst events did not differ between ages, but bursts were longer in adolescents than in adults. Elevated dopamine neuron firing in adolescent rats was also observed in cell-attached recordings in ex vivo brain slices. Using whole cell recordings, we found that passive and active membrane properties were similar across ages. Hyperpolarization-activated cation currents and small-conductance calcium-activated potassium channel currents were also comparable across ages. We found no difference in dopamine D2-class autoreceptor function across ages, although the high baseline firing in adolescents resulted in autoreceptor activation being less effective at silencing neurons. Finally, AMPA receptor-mediated spontaneous excitatory postsynaptic currents occurred at lower frequency in adolescents; GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents occurred at both lower frequency and smaller amplitude in adolescents. In conclusion, VTA dopamine neurons fire faster in adolescence, potentially because GABA tone increases as rats reach adulthood. This elevation of firing rate during adolescence is consistent with it representing a vulnerable period for developing drug addiction.
Dopamine receptors (DARs) in the nucleus accumbens (NAc) are critical for cocaine's actions but the nature of adaptations in DAR function after repeated cocaine exposure remains controversial. This may be due in part to the fact that different methods used in previous studies measured different DAR pools. In the present study, we used a protein crosslinking assay to make the first measurements of DAR surface expression in the NAc of cocaine-experienced rats. Intracellular and total receptor levels were also quantified. Rats self-administered saline or cocaine for ten days. The entire NAc, or core and shell subregions, were collected one or 45 days later, when rats are known to exhibit low and high levels of cue-induced drug seeking, respectively. We found increased cell surface D1 DARs in the NAc shell on the first day after discontinuing cocaine selfadministration (designated withdrawal day 1, or WD1) but this normalized by WD45. Decreased intracellular and surface D2 DAR levels were observed in the cocaine group. In shell, both measures decreased on WD1 and WD45. In core, decreased D2 DAR surface expression was only observed on WD45. Similarly, WD45 but not WD1 was associated with increased D3 DAR surface expression in the core. Taking into account many other studies, we suggest that decreased D2 DAR and increased D3 DAR surface expression on WD45 may contribute to enhanced cocaine-seeking after prolonged withdrawal, although this is likely to be a modulatory effect, in light of the mediating effect previously demonstrated for AMPA-type glutamate receptors. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public Access Author ManuscriptNeuroscience. Author manuscript; available in PMC 2011 August 11. Alterations in dopamine (DA) receptor (DAR) signaling are widely believed to contribute to addiction (Volkow et al., 2009). Many studies have therefore examined the effects of cocaine self-administration and withdrawal on the expression of D1-like (D1 and D5) and D2-like (D2, D3, and D4) classes of DARs in the nucleus accumbens (NAc). Studies in humans and non-human primates have used positron emission topography (PET) to provide an indirect measure of available DAR cell surface receptors. In rat studies, binding assays or in vitro receptor autoradiography have been utilized; these techniques measure DARs in a number of compartments, including but not limited to the cell surface pool. Particularly in rodent studies, results appear to depend on the drug regimen and timing of the experiment (Anderson and Pierce, 2005). However, another important variable is the use...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.