Alginate has been widely used in a variety of biomedical applications including drug delivery and cell transplantation. However, alginate itself has a very slow degradation rate, and its gels degrade in an uncontrollable manner, releasing high molecular weight strands that may have difficulty being cleared from the body. We hypothesized that the periodate oxidation of alginate, which cleaves the carbon-carbon bond of the cis-diol group in the uronate residue and alters the chain conformation, would result in promoting the hydrolysis of alginate in aqueous solutions. Alginate, oxidized to a low extent (approximately 5%), degraded with a rate depending on the pH and temperature of the solution. This polymer was still capable of being ionically cross-linked with calcium ions to form gels, which degraded within 9 days in PBS solution. Finally, the use of these degradable alginate-derived hydrogels greatly improved cartilage-like tissue formation in vivo, as compared to alginate hydrogels.
Receptor flexibility must be incorporated into structure-based drug design in order to portray a more accurate representation of a protein in solution. Our approach is to generate pharmacophore models based on multiple conformations of a protein and is very similar to solvent mapping of hot spots. Previously, we had success using computer-generated conformations of apo human immunodeficiency virus-1 protease (HIV-1p). Here, we examine the use of an NMR ensemble versus a collection of crystal structures, and we compare back to our previous study based on computer-generated conformations. To our knowledge, this is the first direct comparison of an NMR ensemble and a collection of crystal structures to incorporate protein flexibility in structure-based drug design. To provide an accurate comparison between the experimental sources, we used bound structures for our multiple protein structure (MPS) pharmacophore models. The models from an NMR ensemble and a collection of crystal structures were both able to discriminate known HIV-1p inhibitors from decoy molecules and displayed superior performance over models created from single conformations of the protein. Although the active-site conformations were already predefined by bound ligands, the use of MPS allows us to overcome the cross-docking problem and generate a model that does not simply reproduce the chemical characteristics of a specific ligand class. We show that there is more structural variation between 28 structures in an NMR ensemble than 90 crystal structures bound to a variety of ligands. MPS models from both sources performed well, but the model determined using the NMR ensemble appeared to be the most general yet accurate representation of the active site. This work encourages the use of NMR models in structure-based design.
Many proteins contain flexible structures such as loops and hinged domains. A simple root mean square deviation (RMSD) alignment of two different conformations of the same protein can be skewed by the difference between the mobile regions. To overcome this problem, we have developed a novel method to overlay two protein conformations by their atomic coordinates using a Gaussian-weighted RMSD (wRMSD) fit. The algorithm is based on the Kabsch least-squares method and determines an optimal transformation between two molecules by calculating the minimal weighted deviation between the two coordinate sets. Unlike other techniques that choose subsets of residues to overlay, all atoms are included in the wRMSD overlay. Atoms that barely move between the two conformations will have a greater weighting than those that have a large displacement. Our superposition tool has produced successful alignments when applied to proteins for which two conformations are known. The transformation calculation is heavily weighted by the coordinates of the static region of the two conformations, highlighting the range of flexibility in the overlaid structures. Lastly, we show how wRMSD fits can be used to evaluate predicted protein structures. Comparing a predicted fold to its experimentally determined target structure is another case of comparing two protein conformations of the same sequence, and the degree of alignment directly reflects the quality of the prediction.
A novel mechanism of inhibiting HIV-1 protease (HIVp) is presented. Using computational solvent mapping to identify complementary interactions and the Multiple Protein Structure method to incorporate protein flexibility, we generated a receptor-based pharmacophore model of the flexible flap region of the semi-open, apo state of HIVp. Complementary interactions were consistently observed at the base of the flap, only within a cleft with a specific structural role. In the closed, bound state of HIVp, each flap tip docks against the opposite monomer, occupying this cleft. This flap-recognition site is filled by the protein and cannot be identified using traditional approaches based on bound, closed structures. Virtual screening and dynamics simulations show how small molecules can be identified to complement this cleft. Subsequent experimental testing confirms inhibitory activity of this new class of inhibitor. This may be the first new inhibitor class for HIVp since dimerization inhibitors were introduced 17 years ago.
The 1TW7 crystal structure of HIV-1 protease shows the flaps placed wider and more open than what is seen in other examples of the semi-open, apo form. It has been proposed that this might be experimental evidence of allosteric control, because crystal packing creates contacts to the "elbow region" of the protease, which may cause deformation of the flaps. Recent dynamics simulations have shown that the conformation seen in 1TW7 relaxes into the typical semi-open conformation in the absence of the crystal contacts, definitively showing that the crystal contacts cause the deformation (Layten, Hornak, and Simmerling. J. Am. Chem. Soc. 2006, 128, 13360-13361). However, this does not prove or disprove allosteric modulation at the elbow. In this study, we have conducted additional simulations, supplemented with experimental testing, to further probe the possibility of 1TW7 providing an example of allosteric control of the flap region. We show that the contacts are unstable and do not restrict the conformational sampling of the flaps. The deformation seen in the 1TW7 crystal structure is simply opportunistic crystal packing, not allosteric control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.