The chlorine peroxide molecule, ClOOCl, is an important participant in the chlorine-catalyzed destruction of ozone in the stratosphere. Very few laboratory measurements have been made for the partitioning between monomer ClO and dimer ClOOCl at temperatures lower than 250 K. This paper reports absorption spectra for both ClO and ClOOCl when they are in equilibrium at 1 atm and temperatures down to 206 K. The very low ClO concentrations involved requires measuring and calibrating a differential cross section, ΔσClO, for the 10-0 band of ClO. A third law fit of the new results gives Keq = [(2.01 ± 0.17) 10–27 cm3 molecule–1] e(8554∓21)K/T, where the error limits reflect the uncertainty in the entropy change. The resulting equilibrium constants are slightly lower than currently recommended. The slope of the van’t Hoff plot yields a value for the enthalpy of formation of ClOOCl at 298 K, ΔHfo, of 129.8 ± 0.6 kJ mol–1. Uncertainties in the absolute ultraviolet cross sections of ClOOCl and ClO appear to be the limiting factors in these measurements. The new Keq parameters are consistent with the measurements of Santee et al.42 in the stratosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.