Cardiopulmonary bypass (CPB) elicits derangements to the formed elements of blood because of the physical stresses of extracorporeal flow. Methods of reducing the impact of CPB include circuit surface modification and pharmacological supplementation. The purpose of this study was to examine the effects of aprotinin in combination with surface modification during simulated CPB. Fresh whole bovine blood was used to prime standard CPB circuits divided into four groups (N = 3): control (CTR), aprotinin 300 KIU/mL (APR), Poly (2-methoxyethylacrylate) coating (PMEA), and APR with PMEA (APR–PMEA). Physical stresses included venous reservoir negative pressure (−85 mmHg), arterial line pressure of 150 mmHg at 5 LPM, and air–blood interface, applied over a 90-minute period. Samples were drawn at the following times: 0, 10, 45, and 90 minutes. Endpoints included platelet count (PLT), plasma-free hemoglobin (PFHb), and thromboelastography (TEG). PLT did not change (138.9 ± 15.0 vs. 102.9 ± 21.0, p = ns) throughout the 90-minute experimental periods in any group. PFHb increased significantly (mean of 19- fold) throughout the experiment, but was not affected by any treatment. The TEG index declined in the CTR (3.6 ± 0.4 vs. −16.2 ± 2.9, p < .0003), PMEA (5.9 ± 0.8 vs. −2.7 ± 3.8, p < .02), and APR–PMEA (4.6 ± 1.0 vs. −2.8 ± 0.3 p < .0003) groups, but not in the APR group (3.6 ± 2.2 vs. −1.3 ± 3.3 p = .10). In conclusion, neither APR nor PMEA had an effect on either red cell hemolysis or PLT, but APR treatment alone significantly attenuated the derangements in coagulation induced in this extracorporeal model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.