Protein arginine deiminase (PAD) enzymes catalyze the conversion of protein-bound arginine into citrulline, an irreversible posttranslational modification with loss of a positive charge that can influence protein–protein interactions and protein structure. Protein arginine deiminase activity depends on high intracellular calcium concentrations occurring in dying cells. In this study, we demonstrate that protein citrullination is common during pyroptotic cell death in macrophages and that inhibition of PAD enzyme activity by Cl-amidine, a pan-PAD inhibitor, blocks NLRP3 inflammasome assembly and proinflammatory IL-1β release in macrophages. Genetic deficiency of either PAD2 or PAD4 alone in murine macrophages does not impair IL-1β release; however, pharmacological inhibition or small interfering RNA knockdown of PAD2 within PAD4−/− macrophages does. Our results suggest that PAD2 and 4 activity in macrophages is required for optimal inflammasome assembly and IL-1β release, a finding of importance for autoimmune diseases and inflammation.
Peptidylarginine deiminase 2 (PAD2/PADI2) has been implicated in various inflammatory diseases and, more recently, cancer. The goal of this study was to test the hypothesis that PAD2 promotes oncogenesis using a transgenic mouse model. We found that about 37% of transgenic mice overexpressing human FLAG-PAD2 downstream of the MMTV-LTR promoter develop spontaneous neoplastic skin lesions. Molecular and histopathologic analyses of the resulting lesions find that they contain increased levels of markers for invasion, inflammation, and epithelial-to-mesenchymal transition (EMT) and that a subset of the lesions progress to invasive squamous cell carcinoma (SCC). We then stably overexpressed FLAG-PAD2 in the human SCC cell line, A431, and found that the PAD2-overexpressing cells were more tumorigenic in vitro and also contained elevated levels of markers for inflammation and EMT. Collectively, these studies provide the first genetic evidence that PAD2 functions as an oncogene and suggest that PAD2 may promote tumor progression by enhancing inflammation within the tumor microenvironment. Cancer Res; 74(21); 6306-17. Ó2014 AACR.
The genus Edwardsiella is composed of a diverse group of facultative anaerobic, gram-negative bacteria that can produce disease in a wide variety of hosts, including birds, reptiles, mammals, and fish. Our report describes the isolation and identification of Edwardsiella piscicida associated with chronic mortality events in 2 separate captive largemouth bass ( Micropterus salmoides) populations in New York and Florida. Wet-mount biopsies of skin mucus, gill, kidney, and spleen from several affected largemouth bass contained significant numbers of motile bacteria. Histologic examination revealed multifocal areas of necrosis scattered throughout the heart, liver, anterior kidney, posterior kidney, and spleen. Many of the necrotic foci were encapsulated or replaced by discrete granulomas and associated with colonies of gram-negative bacteria. Initial phenotypic and matrix-assisted laser desorption ionization–time of flight mass spectrometric analysis against existing spectral databases of recovered isolates identified these bacteria as Edwardsiella tarda. Subsequent molecular analysis using repetitive sequence mediated and species-specific PCR, as well as 16S rRNA, rpoB, and gyrB sequences, classified these isolates as E. piscicida. As a newly designated taxon, E. piscicida should be considered as a differential for multiorgan necrosis and granulomas in largemouth bass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.