The planform dynamics of meandering rivers produce a complex array of meander forms, including elongated meander loops. Thus far, few studies have examined in detail the flow structure within meander loops and the relation of flow structure to patterns of planform change. This field-based investigation examines relations between three-dimensional fluid motion and channel change within an elongated, asymmetrical meander loop containing multiple pool-riffle structures. The downstream velocity field is characterized by a high-velocity core that shifts slightly outward as flow moves through individual lobes of the loop. For some of the measured flows this core becomes submerged below the water surface downstream of the lobe apexes. Vectors of cross-stream/vertical velocities indicate that skew-induced helical motion develops within the pools near lobe apexes and decays over riffles where channel curvature is less pronounced. Maximum rates of bank retreat generally occur near lobe apexes where impingement of the flow on the outer channel bank is greatest. However, maximum rates and loci of bank retreat differ for upstream and downstream lobes of the loop, leading to increasing asymmetry of loop geometry over time -a finding consistent with experimental investigations of loop evolution.
The complexity of fluvial systems necessitates interdisciplinary research in fluvial geomorphology and aquatic ecology to develop a fundamental understanding of interconnections among biotic and abiotic aspects of these systems. Integrated knowledge of this type is vital for environmental management of streams in human-dominated environments. A conceptual framework is presented for integrating geomorphological and ecological research on streams in East Central Illinois, USA, a glaciated low-relief agricultural landscape. The framework embodies a multiscale perspective in which a geomorphological conception of the fluvial system is used to define a hierarchy of characteristic spatial scales for exploring important linkages between stream geomorphology and aquatic ecology. The focus ecologically is on fish, because a rich body of historical information exists on fisheries in East Central Illinois and because past work has suggested that availability of physical habitat is a major factor influencing the community characteristics of fish in this human-altered environment. The hierarchy embodied in the framework includes the network, link, planform, bar unit, bar element, and bedform/grain scales. Background knowledge from past research is drawn upon to identify potential linkages between geomorphological and ecological conditions at each of these scales. The conceptual framework is useful for guiding integrated ecogeomorphological research at specific scales and across different scales. It also is helpful for illustrating how widespread human modification of streams has catastrophically altered the scalar structure of fluvial systems in East Central Illinois. Knowledge emerging from the integrated research provides a basis for environmental-management schemes directed toward stream naturalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.