The peptidoglycan cell wall is a predominant structure of bacteria, determining cell shape and supporting survival in diverse conditions. Peptidoglycan is dynamic and requires regulated synthesis of new material, remodeling, and turnover - or autolysis - of old material. Despite exploitation of peptidoglycan synthesis as an antibiotic target, we lack a fundamental understanding of how peptidoglycan synthesis and autolysis intersect to maintain the cell wall. Here, we uncover a critical physiological role for a widely misunderstood class of autolytic enzymes, lytic transglycosylases (LTGs). We demonstrate that LTG activity is essential to survival by contributing to periplasmic processes upstream and independent of peptidoglycan recycling. Defects accumulate in Vibrio cholerae LTG mutants due to generally inadequate LTG activity, rather than absence of specific enzymes, and essential LTG activities are likely independent of protein-protein interactions, as heterologous expression of a non-native LTG rescues growth of a conditionally LTG-null mutant. Lastly, we demonstrate that soluble, uncrosslinked, endopeptidase-dependent peptidoglycan chains, also detected in the wild-type, are enriched in LTG mutants, and that LTG mutants are hypersusceptible to the production of diverse periplasmic polymers. Collectively, our results suggest that LTGs prevent toxic crowding of the periplasm with synthesis-derived peptidoglycan polymers and contrary to prevailing models, that this autolytic function can be temporally separate from peptidoglycan synthesis.
Protein lysine fatty acylation is increasingly recognized as a prevalent and important protein post-translation modification. Recently, it has been shown that K-Ras4a, R-Ras2, and Rac1 are regulated by lysine fatty acylation. Here, we investigated whether other members of the Ras superfamily could also be regulated by lysine fatty acylation. Several small GTPases exhibit hydroxylamine resistant fatty acylation, suggesting they may also have protein lysine fatty acylation. We further characterized one of these GTPases, RalB. We show that RalB has C-terminal lysine fatty acylation, with the predominant modification site being Lys200. The lysine acylation of RalB is regulated by SIRT2, a member of the sirtuin family of nicotinamide adenine dinucleotide (NAD)-dependent protein lysine deacylases. Lysine fatty acylated RalB exhibited enhanced plasma membrane localization and recruited its known effectors Sec5 and Exo84, members of the exocyst complex, to the plasma membrane. RalB lysine fatty acylation did not affect the proliferation or anchorage-independent growth but did affect the trans-well migration of A549 lung cancer cells. This study thus identified an additional function for protein lysine fatty acylation and the deacylase SIRT2.
Increasing complexity in socio-technological systems of domains such as aviation, aerospace, and the military gives rise to equally complex problems. Solving these complex problems requires the collaborative efforts of teams who are able to not just integrate their collective knowledge, but also to monitor and regulate their collective problem solving performance. Unfortunately, current training practices have not yet been developed to promote the metacognitive processes necessary for teams to successfully solve problems in these complex domains. In this paper, we outline a theoretical framework based on the systematic use of metacognitive prompting to improve collaborative problem solving. Our goal is to explicate a theoretically and empirically grounded instructional strategy with testable propositions in support of the development and empirical evaluation of training for complex problem solving.
The peptidoglycan cell wall is a predominant defining structure of bacteria, determining cell shape and supporting survival in diverse conditions. As a single, macromolecular sacculus enveloping the bacterial cell during growth and division, peptidoglycan is necessarily a dynamic structure that requires highly regulated synthesis of new material, remodeling, and turnover, or autolysis, of old material. Despite ubiquitous clinical exploitation of peptidoglycan synthesis as an antibiotic target, much remains unknown about how bacteria modulate synthetic and autolytic processes. Here, we couple bacterial genetics in <em>Vibrio cholerae</em> with compositional analysis of soluble pools of peptidoglycan turnover products to uncover a critical role for a widely misunderstood class of autolytic enzymes, the lytic transglycosylases (LTGs). We demonstrate that LTG activity is specifically required for vegetative growth. The vast majority of LTGs, however, are dispensable for growth, and defects that are ultimately lethal accumulate due to generally inadequate LTG activity, rather than the absence of specific individual enzymes. Consistent with this, we found that a heterologously expressed <em>E. coli</em> LTG, MltE, is capable of sustaining <em>V. cholerae</em> growth in the absence of endogenous LTGs. Lastly, we demonstrate that soluble, uncrosslinked, endopeptidase-dependent peptidoglycan chains accumulate in the WT, and, to a higher degree, in LTG mutants, and that LTG mutants are hyper-susceptible to the production of diverse periplasmic polymers. Collectively, our results suggest that a key function of LTGs is to prevent toxic crowding of the periplasm with synthesis-derived PG fragments. Contrary to prevailing models, our data further suggest that this process can be temporally separate from peptidoglycan synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.