Pancreatic cancer, the 4th leading cause of cancer death in the US, is highly resistant to all current chemotherapies, and its growth is facilitated by chronic inflammation. An important mediator of inflammation is the nuclear factor kappa B (NFκB), a transcription factor that regulates over 500 genes including the regulation of anti-apoptotic proteins, cell cycle progression and cytokine production. NFκB is constitutively activated in pancreatic cancer cells contributing to their resistance to apoptosis and high metastatic potential. Although many small molecules that inhibit NFκB have been identified, none are currently used in the clinic, perhaps due to their lack of specificity. To identify novel inhibitors of NFκB, the HBOI library of enriched fractions from marine organisms was screened using a reporter cell line that produces luciferin under the transcriptional control of NFκB. Fractions from the sponge Amphibleptula were active in this screen and contained the antifungal cyclic peptide microsclerodermin A. Microsclerodermin A is shown here to inhibit NFκB transcriptional activity in a reporter cell line, to reduce levels of phosphorylated (active) NFκB in the AsPC-1 cell line, to have an IC50 for cytotoxicity in the low micromolar range against the AsPC-1, BxPC-3, MIA PaCa-2 and PANC-1 pancreatic cancer cell lines, and to induce significant apoptosis in the AsPC-1, BxPC-3 and the PANC-1 cell lines. Treatment of AsPC-1 cells with microsclerodermin A also resulted in an increase in IL-8 production without apparent induction of angiogenic factors and there is the possibility that inhibition of NFκB by microsclerodermin A is mediated by the glycogen synthase kinase 3β pathway.
Apoptosis is recognized as the main mechanism of oligodendrocyte loss in Multiple Sclerosis caused either by immune mediated injury (Barnett & Prineas, ) or a direct degenerative process (oligodendrogliapathy; Lucchinetti et al., ). Cuprizone induced demyelination is the result of non-immune mediated apoptosis of oligodendrocytes (OL) and represents a model of oligodendrogliapathy (Simmons, Pierson, Lee, & Goverman, ). Glycogen Synthase Kinase (GSK) 3b has been shown to be pro-apoptotic for cells other than OL. Here, we sought to investigate whether GSK3b plays a role in cuprizone-induced apoptosis of OL by using a novel inducible conditional knockout (cKO) of GSK3b in mature OL. While depletion of GSK3b has no effect on survival of uninjured OL, it increases survival of mature OL exposed to cuprizone. We show that GSK3b-deficient OLs are protected against caspase-dependent, but not against caspase-independent apoptosis. Active GSK3b is present in the nuclei of OL at peak of caspase-dependent apoptosis. Significant preservation of myelinated axons is associated with GSK3b depletion and glial cell activation is markedly reduced. Collectively, the data show that GSK3b is pro-apoptotic for caspase-dependent cell death, likely through activation of nuclear GSK3b and its depletion promotes survival of oligodendrocytes and attenuates myelin loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.