Spatial normalization, registration, and segmentation techniques for Magnetic Resonance Imaging (MRI) often use a target or template volume to facilitate processing, take advantage of prior information, and define a common coordinate system for analysis. In the neuroimaging literature, the MNI305 Talairach-like coordinate system is often used as a standard template. However, when studying pediatric populations, variation from the adult brain makes the MNI305 suboptimal for processing brain images of children. Morphological changes occurring during development render the use of age-appropriate templates desirable to reduce potential errors and minimize bias during processing of pediatric data. This paper presents the methods used to create unbiased, age-appropriate MRI atlas templates for pediatric studies that represent the average anatomy for the age range of 4.5–18.5 years, while maintaining a high level of anatomical detail and contrast. The creation of anatomical T1-weighted, T2-weighted, and proton density-weighted templates for specific developmentally important age-ranges, used data derived from the largest epidemiological, representative (healthy and normal) sample of the U.S. population, where each subject was carefully screened for medical and psychiatric factors and characterized using established neuropsychological and behavioral assessments. . Use of these age-specific templates was evaluated by computing average tissue maps for gray matter, white matter, and cerebrospinal fluid for each specific age range, and by conducting an exemplar voxel-wise deformation-based morphometry study using 66 young (4.5–6.9 years) participants to demonstrate the benefits of using the age-appropriate templates. The public availability of these atlases/templates will facilitate analysis of pediatric MRI data and enable comparison of results between studies in a common standardized space specific to pediatric research.
Summary Brain enlargement has been observed in children with Autism Spectrum Disorder (ASD), but the timing of this phenomenon and its relationship to the appearance of behavioral symptoms is unknown. Retrospective head circumference and longitudinal brain volume studies of 2 year olds followed up at age 4 years, have provided evidence that increased brain volume may emerge early in development.1, 2 Studies of infants at high familial risk for autism can provide insight into the early development of autism and have found that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life3,4. These observations suggest that prospective brain imaging studies of infants at high familial risk for ASD might identify early post-natal changes in brain volume occurring before the emergence of an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that cortical surface area hyper-expansion between 6-12 months of age precedes brain volume overgrowth observed between 12-24 months in the 15 high-risk infants diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep learning algorithm primarily using surface area information from brain MRI at 6 and 12 months of age predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81%, sensitivity of 88%). These findings demonstrate that early brain changes unfold during the period in which autistic behaviors are first emerging.
OBJECTIVE Evidence from prospective high-risk infant studies suggests that early symptoms of autism usually emerge late in the first- or early in the second-year of life after a period of relatively typical development. This is the first neuroimaging study to prospectively examine white matter fiber tract organization during this interval in infants who develop autism spectrum disorder (ASD) by 24 months. METHOD Participants included 92 infant siblings from an ongoing imaging study of autism. All participants had diffusion tensor imaging at 6 months and behavioral assessments at 24 months, with a majority contributing additional imaging data at either or both 12 and 24 months. At 24 months, 28 infants met criteria for ASD; 64 infants did not. Microstructural properties of white-matter fiber tracts reported to be associated with ASD or related behaviors were characterized by fractional anisotropy (FA) and radial and axial diffusivity. RESULTS FA trajectories differed significantly between infants who did versus did not develop ASD for 12 of 15 fiber tracts. Development for most fiber tracts in infants with ASD was characterized by elevated FA at 6 months followed by slower developmental change overtime relative to infants without ASD. Thus, by 24 months of age, lower FA values were evident for those with ASD. CONCLUSION These results suggest that the aberrant development of white matter pathways precede the manifestation of autistic symptoms in the first year of life. Longitudinal data are critical to characterizing the dynamic age-related brain and behavior changes underlying this neurodevelopmental disorder.
Importance The study provides novel data to inform the mechanisms by which poverty negatively impacts childhood brain development. Objective To investigate whether income to needs ratio experienced in early childhood impacts brain development at school age and to explore the mediators of this effect. Design Data from a prospective longitudinal study of emotion development in preschool children who participated in neuroimaging at school age were used to investigate the effects of poverty on brain development. Children were assessed annually for 3-6 years prior to the time of a MRI scan during which they were evaluated on psychosocial, behavioral and other developmental dimensions. Setting An academic research unit at the Washington University School of Medicine. Participants Preschoolers 3- 6 years of age were ascertained from primary care and day care sites in the St. Louis metropolitan area and annually assessed behaviorally for 5-10 years. Healthy preschoolers and those with clinical symptoms of depression participated in neuroimaging at school age/early adolescence. Main Outcome Measure(s) The main outcomes of interest were brain volumes of children's white matter and cortical gray matter as well as hippocampus and amygdala obtained using MRI. Mediators of interest were caregiver support/hostility measured observationally during the preschool period and stressful life events measured prospectively. Results Poverty was associated with smaller white and cortical gray matter and hippocampal and amygdala volumes. The effects of poverty on hippocampal volume were mediated by caregiving support/hostility on the left and right as well as stressful life events on the left. Conclusions and Relevance The findings that exposure to poverty in early childhood materially impacts brain development at school age further underscores the importance of attention to the well established deleterious effects of poverty on child development. Findings that these effects on the hippocampus are mediated by caregiving and stressful life events suggest that attempts to enhance early caregiving should be a focused public health target for prevention and early intervention. Findings substantiate the behavioral literature on the negative effects of poverty on child development and provide new data confirming that effects extend to brain development. Mechanisms for these effects on the hippocampus are suggested to inform intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.