One of the most salient characteristics of the heart is its ability to adjust work output to external load. To examine whether a single cardiomyocyte preparation retains this property, we measured the contractile function of a single rat cardiomyocyte under a wide range of loading conditions using a force-length measurement system implemented with adaptive control. A pair of carbon fibers was used to clamp the cardiomyocyte, attached to each end under a microscope. One fiber was stiff, serving as a mechanical anchor, while the bending motion of the compliant fiber was monitored for force-length measurement. Furthermore, by controlling the position of the compliant fiber using a piezoelectric translator based on adaptive control, we could change load dynamically during contractions. Under unloaded conditions, maximal shortening velocity was 106 +/- 8.9 microm/s (n = 13 cells), and, under isometric conditions, peak developed force reached 5,720 nN (41.6 +/- 5.6 mN/mm(2); n = 17 cells). When we simulated physiological working conditions consisting of an isometric contraction, followed by shortening and relaxation, the average work output was 828 +/- 123 J/m(3) (n = 20 cells). The top left corners of tension-length loops obtained under all of these conditions approximate a line, analogous to the end-systolic pressure-volume relation of the ventricle. All of the functional characteristics described were analogous to those established by studies using papillary muscle or trabeculae preparations. In conclusion, the present results confirmed the fact that each myocyte forms the functional basis for ventricular function and that single cell mechanics can be a link between subcellular events and ventricular mechanics.
Therapeutic hypothermia has been used for treating brain injury after out-of-hospital cardiac arrest. Its potential benefit on minimizing myocardial ischemic injury has been explored, but clinical evidence has yet to confirm positive results in preclinical studies. Importantly, therapeutic hypothermia for myocardial infarction is unique in that it can be initiated prior to reperfusion, in contrast to its application for brain injury in resuscitated cardiac arrest patients. Recent advance in cooling technology allows more rapid cooling of the heart than ever and new clinical trials are designed to examine the efficacy of rapid therapeutic hypothermia for myocardial infarction. In this review, we summarize current knowledge regarding the effect of hypothermia on normal and ischemic hearts and discuss issues to be solved in order to realize its clinical application for treating acute myocardial infarction.
Coronary microembolization is one of the main causes of the “no-reflow” phenomenon, which commonly occurs after reperfusion of an occluded coronary artery. Given its high incidence and the fact that it has been proven to be an independent predictor of cardiac morbidity and mortality, there is an imperative need to study its underlying mechanisms and pathophysiology. Large animal models are essential to perform translational studies. Currently there is no animal model that recapitulates a clinical scenario of thrombogenic microembolism with preceding myocardial ischemia. Therefore, the goal of this study was to develop and characterize a novel pig model of coronary microembolization using autologous thrombus injection (CMET). Twenty-three pigs underwent myocardial infarction through percutaneous balloon occlusion of the left anterior descending artery (LAD). Each animal was enrolled in one of two groups: (1) the CMET group, in which the LAD occlusion was followed by delivery of autologous clotted blood in the LAD (distal to the balloon occlusion) and reperfusion; (2) the ischemic reperfusion (I/R) group, in which the LAD ischemia was followed by reperfusion. Surviving animals underwent functional and morphological characterization at 1-week post-procedure. Three sham operated animals were used as a control. CMET resulted in impaired left ventricular function compared to I/R pigs at 1 week. Three-dimensional echocardiography demonstrated reduced ejection fraction in the CMET group (CMET vs. I/R: 35.6 ± 4.2% vs. 47.6 ± 2.4%, p = 0.028). Invasive hemodynamic measurements by Swan-Ganz and left ventricular pressure-volume catheters revealed that CMET impaired left ventricular contractility and diastolic function. This was confirmed by both load-dependent indices including cardiac output (CMET vs. I/R: 2.7 ± 0.2 l/min, vs. 4.0 ± 0.1 l/min, p = 0.002) and load independent indices including preload-recruitable stroke work (CMET vs. I/R: 25.8 ± 4.0 vs. 47.5 ± 6.5 mmHg, p = 0.05) and end-diastolic pressure-volume relationship (slope, 0.68 ± 0.07 vs. 0.40 ± 0.11 mmHg/ml, p = 0.01). Our unique closed-chest model of coronary microembolization using autologous thrombus injection resembles the clinical condition of thrombogenic coronary microembolization in I/R injury. This model offers opportunities to conduct translational studies for understanding and treating coronary microembolization in myocardial infarction.
Non-invasive means of evaluating appropriate cardiac unloading remain to be established. We hypothesized that myocardial deformation assessed by echocardiographic speckle-tracking strain analysis can reliably estimate the degree of left ventricular (LV) unloading under mechanical circulatory support. A total of 24 Yorkshire pigs underwent Impella-mediated acute LV unloading 1-2 weeks after myocardial infarction (MI). Echocardiographic and invasive pressure-volume measurements were used to evaluate the degree of LV unloading. Pressure-volume analysis before and after LV unloading exhibited a significant decrease in stroke work (3399 ± 1440 to 1244 ± 659 mmHg ml, p < 0.001), suggesting reduced external cardiac work. Both longitudinal strain (- 14.6 ± 4.1% to - 10.6 ± 2.3%, p < 0.001) and circumferential strain (- 18.7 ± 6.1% to - 9.3 ± 3.5%, p < 0.001) decreased after LV unloading, and there were linear relationships between stroke work and echocardiographic longitudinal (r = - 0.61, p < 0.001) as well as circumferential strains (r = - 0.75, p < 0.001). Echocardiographic LV strain analysis offers a non-invasive assessment of LV unloading in subacute MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.