The clinical and cytogenetic findings associated with mosaicism for trisomy 21/Down syndrome are the focus of this review. The primary topics discussed in this overview of the extant literature include the history of this condition and its diagnosis, the incidence of mosaicism, the meiotic and/or mitotic chromosomal malsegregation events resulting in mosaicism, the observation of mosaicism in the parents of children with the non-mosaic form of Down syndrome, and the variation in phenotypic outcome for both constitutional and acquired traits present in people with mosaicism for trisomy 21/Down syndrome, including cognition, fertility, and overall phenotypic findings. Additional topics reviewed include the social conditions of people with mosaicism, as well as age-related and epigenetic alterations observed in people with mosaicism for trisomy 21/Down syndrome. .
Secondary chromosomal constrictions are thought to be the loci of the genome which code for ribosomal RNA synthesis. Their metaphase length could depend on nucleolar size or level of functional activity in interphase or on gene content. Wild-type frogs and a frog heterozygous for the Oxford nucleolar mutation were studied to determine which possibility is more probable. The mutant was studied because its single nucleolus is larger than wild-type nucleoli, it has only one constriction, half as many ribosomal genes, but produces the same amount of ribosomal RNA. The results indicate (1) that constriction length depends on the amount of genome (whereas others have shown nucleolar size to be related to level of activity) and (2) that the deletion is limited to the constricted segment, supporting the view that the constriction is the nucleolar organizer. Also, metaphase constrictions are longer than expected from their DNA content.
Down syndrome, which results from a trisomic imbalance for chromosome 21, has been associated with 80+ phenotypic traits. However, the cellular changes that arise in somatic cells due to this aneuploid condition are not fully understood. The primary aim of this study was to determine if germline trisomy 21 is associated with an increase in spontaneous somatic cell chromosomal instability frequencies (SCINF). To achieve this aim, we quantified SCINF in people with mosaic Down syndrome using a cytokinesis-blocked micronucleus assay. By comparing values in their isogenic trisomic/disomic cells, we obtained a measure of differences in SCINF that are directly attributable to a trisomy 21 imbalance, since differential effects attributable to “background” genetic factors and environmental exposures could be eliminated. A cross-sectional assessment of 69 people with mosaic Down syndrome (ages 1 to 44; mean age of 12.84 years) showed a significantly higher frequency of micronuclei in their trisomic (0.37 ± 0.35 [mean ± standard deviation]) compared to disomic cells (0.18 ± 0.11)(P <0.0001). The daughter binucleates also showed significantly higher levels of abnormal patterns in the trisomic (1.68 ± 1.21) compared to disomic (0.35 ± 0.45) cells (P <0.0001). Moreover, a significant Age x Cell Type interaction was noted (P = 0.0113), indicating the relationship between age and SCINF differed between the trisomic and disomic cells. Similarly, a longitudinal assessment (mean time interval of 3.9 years; range of 2 to 6 years) of 18 participants showed a mean 1.63-fold increase in SCINF within individuals over time for their trisomic cells (P = 0.0186), compared to a 1.13-fold change in their disomic cells (P = 0.0464). In summary, these results showed a trisomy 21-associated, age-related increase in SCINF. They also underscore the strength of the isogenic mosaic Down syndrome model system for “unmasking” cellular changes arising from a trisomy 21 imbalance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.