Japan's 11 March Tohoku disaster vividly illustrates how tsunamis have the power to unleash widespread destruction on coasts, in this instance both in Japan and elsewhere after traveling across the Pacific Ocean. But when and where do coastal residents and visitors need to evacuate, and where will they be safe? During the event, computer modeling was used to forecast tsunami arrival time, duration, and wave height for communities around the Pacific. These forecasts were then used by emergency managers to identify areas that needed to be evacuated and, perhaps as important, areas that did not need to be evacuated, allowing evacuation plans to be specifically targeted to communities at risk.
In response to the 2004 Indian Ocean tsunami, the United States began a careful review and strengthening of its programs aimed at reducing the consequences of tsunamis. Several reports and calls to action were drafted, including the Tsunami Warning and Education Act (Public Law 109-424) signed into law by the President in December 2006. NOAA's National Geophysical Data Center (NGDC) and co-located World Data Center for Geophysics and Marine Geology (WDC-GMG) maintain a national and international tsunami data archive that fulfills part of the P.L. 109-424. The NGDC/WDC-GMG long-term tsunami data archive has expanded from the original global historical event databases and damage photo collection, to include tsunami deposits, coastal water-level data, DART TM buoy data, and high-resolution coastal DEMs. These data are used to validate models, provide guidance to warning centers, develop tsunami hazard assessments, and educate the public about the risks from tsunamis. In this paper we discuss current steps and future actions to be taken by NGDC/WDC-GMG to support tsunami hazard mitigation research, to ultimately help save lives and improve the resiliency of coastal communities.
The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) generates digital elevation models (DEMs) that range from the local to global scale. Collectively, these DEMs are essential to determining the timing and extent of coastal inundation and improving community preparedness, event forecasting, and warning systems. We initiated a comprehensive framework at NCEI, the Continuously Updated DEM (CUDEM) Program, with seamless bare-earth, topographic-bathymetric and bathymetric DEMs for the entire United States (U.S.) Atlantic and Gulf of Mexico Coasts, Hawaii, American Territories, and portions of the U.S. Pacific Coast. The CUDEMs are currently the highest-resolution, seamless depiction of the entire U.S. Atlantic and Gulf Coasts in the public domain; coastal topographic-bathymetric DEMs have a spatial resolution of 1/9th arc-second (~3 m) and offshore bathymetric DEMs coarsen to 1/3rd arc-second (~10 m). We independently validate the land portions of the CUDEMs with NASA’s Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observatory and calculate a corresponding vertical mean bias error of 0.12 m ± 0.75 m at one standard deviation, with an overall RMSE of 0.76 m. We generate the CUDEMs through a standardized process using free and open-source software (FOSS) and provide open-access to our code repository. The CUDEM framework consists of systematic tiled geographic extents, spatial resolutions, and horizontal and vertical datums to facilitate rapid updates of targeted areas with new data collections, especially post-storm and tsunami events. The CUDEM framework also enables the rapid incorporation of high-resolution data collections ingested into local-scale DEMs into NOAA NCEI’s suite of regional and global DEMs. Future research efforts will focus on the generation of additional data products, such as spatially explicit vertical error estimations and morphologic change calculations, to enhance the utility and scientific benefits of the CUDEM Program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.