Complete congenital arhinia is a rare defect of embryogenesis leading to the absence of the external nose and airway. We report our novel multistaged reconstructive approach and literature review. Nasal methyl methacrylate prosthesis was created from a stereolithographic model for use as a temporary prosthesis and tissue expander. Lefort 1 with cannulization was utilized for midface advancement and airway formation. External framework was reconstructed with bilateral conchal bowl cartilage and rib osteocartilagenous grafts. Patient was pleased with the aesthetics and had safe decannulation with the ability to breathe through the nose and airway.
Many global development agencies self-report their project outcomes, often relying on subjective data that is collected sporadically and communicated months later. These reports often highlight successes and downplay challenges. Instrumented monitoring via distributed data collection platforms may provide crucial evidence to help inform the sector and public on the effectiveness of aid, and the on-going challenges. This paper presents the process of designing and validating an integrated sensor platform with cellular-to-internet reporting purposely targeted at global development programs. The integrated hardware platform has been applied to water, sanitation, energy and infrastructure interventions and validated through laboratory calibration and field observations. Presented here are two examples: a water pump and a household water filter, wherein field observations agreed with the data algorithm with a linear fit slope of between 0.91 and 1, and an r-squared of between 0.36 and 0.39, indicating a wide confidence OPEN ACCESSSustainability 2013, 5 3289 interval but with low overall error (i.e., less than 0.5% in the case of structured field observations of water volume added to a household water filter) and few false negatives or false positives.
Uveal coloboma represents one of the most common congenital ocular malformations accounting for up to 10% of childhood blindness (1~ in 5,000 live birth). Coloboma originates from defective fusion of the optic fissure (OF), a transient gap that forms during eye morphogenesis by asymmetric, ventral invagination. Genetic heterogeneity combined with the activity of developmentally regulated genes suggest multiple mechanisms regulating OF closure. The tumor suppressor and FERM domain protein neurofibromin 2 (NF2) controls diverse processes in cancer, development and regeneration, via Hippo pathway and cytoskeleton regulation. In humans, NF2 mutations can cause ocular abnormalities, including coloboma, however, its actual role in OF closure is unknown. Using conditional inactivation in the embryonic mouse eye, our data indicates that loss of Nf2 function results in a novel underlying cause for coloboma. In particular, mutant eyes show substantially increased RPE proliferation in the fissure region with concomitant acquisition of RPE cell fate. Cells lining the OF margin can maintain RPE fate ectopically and fail to transition from neuroepithelial to cuboidal shape. In the dorsal RPE of the optic cup, Nf2 inactivation leads to a robust increase in cell number, with local disorganization of the cytoskeleton components F-actin and pMLC2. We propose that RPE hyperproliferation is the primary cause for the observed defects causing insufficient alignment of the OF margins in Nf2 mutants and failure to fuse properly, resulting in persistent coloboma. Our findings indicate that limiting proliferation particularly in the RPE layer is a critical mechanism during optic fissure closure
Uveal coloboma represents one of the most common congenital ocular malformations accounting for up to 10% of childhood blindness (1~ in 5,000 live birth). Coloboma originates from defective fusion of the optic fissure (OF), a transient gap that forms during eye morphogenesis by asymmetric, ventral invagination. Genetic heterogeneity combined with the activity of developmentally regulated genes suggest multiple mechanisms regulating OF closure. The tumor suppressor and FERM domain protein neurofibromin 2 (NF2) controls diverse processes in cancer, development and regeneration, via Hippo pathway and cytoskeleton regulation. In humans, NF2 mutations can cause ocular abnormalities, including coloboma, however, its actual role in OF closure is unknown. Using conditional inactivation in the embryonic mouse eye, our data indicates that loss of Nf2 function results in a novel underlying cause for coloboma. In particular, mutant eyes show substantially increased RPE proliferation in the fissure region with concomitant acquisition of RPE cell fate. Cells lining the OF margin can maintain RPE fate ectopically and fail to transition from neuroepithelial to cuboidal shape. In the dorsal RPE of the optic cup, Nf2 inactivation leads to a robust increase in cell number, with local disorganization of the cytoskeleton components F--actin and pMLC2. We propose that RPE hyperproliferation is the primary cause for the observed defects causing insufficient alignment of the OF margins in Nf2 mutants and failure to fuse properly, resulting in persistent coloboma. Our findings indicate that limiting proliferation particularly in the RPE layer is a critical mechanism during optic fissure closure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.