The aim of this study was to determine, in vitro, the effects of X4 and R5 HIV‐1 gp120 and Tat on: (1) endothelial cell senescence and (2) endothelial cell microRNA (miR) expression. Endothelial cells were treated with media without and with: R5 gp120 (100 ng/mL), X4 gp120 (100 ng/mL), or Tat (500 ng/mL) for 24 h and stained for senescence‐associated β‐galactosidase (SA‐β‐gal). Cell expression of miR‐34a, miR‐217, and miR‐146a was determined by RT‐PCR. X4 and R5 gp120 and Tat significantly increased (~100%) cellular senescence versus control. X4 gp120 significantly increased cell expression of miR‐34a (1.60 ± 0.04 fold) and miR‐217 (1.52 ± 0.18), but not miR‐146a (1.25 ± 0.32). R5 gp120 significantly increased miR‐34a (1.23 ± 0.07) and decreased miR‐146a (0.56 ± 0.07). Tat significantly increased miR‐34a (1.49 ± 0.16) and decreased miR‐146a (0.55 ± 0.23). R5 and Tat had no effect on miR‐217 (1.05 ± 0.13 and 1.06 ± 0.24; respectively). HIV‐1 gp120 (X4 and R5) and Tat promote endothelial cell senescence and dysregulation of senescence‐associated miRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.