Inactivation of eukaryotic 2-Cys peroxiredoxins (Prxs) by hyperoxidation has been proposed to promote accumulation of hydrogen peroxide (H2O2) for redox-dependent signaling events. We examined the oxidation and oligomeric states of PrxI and -II in epithelial cells during mitogenic signaling and in response to fluxes of H2O2. During normal mitogenic signaling, hyperoxidation of PrxI and -II was not detected. In contrast, H2O2-dependent cell cycle arrest was correlated with hyperoxidation of PrxII, which resulted in quantitative recruitment of ∼66- and ∼140-kD PrxII complexes into large filamentous oligomers. Expression of cyclin D1 and cell proliferation did not resume until PrxII-SO2H was reduced and native PrxII complexes were regenerated. Ectopic expression of PrxI or -II increased Prx-SO2H levels in response to oxidant exposure and failed to protect cells from arrest. We propose a model in which Prxs function as peroxide dosimeters in subcellular processes that involve redox cycling, with hyperoxidation controlling structural transitions that alert cells of perturbations in peroxide homeostasis.
NADPH oxidases produce reactive oxygen species (ROS) that serve as co-stimulatory signals for cell proliferation. In mouse lung epithelial cells that express Nox1, Nox2, Nox4, p22(phox), p47(phox), p67(phox), and Noxo1, overexpression of Nox1 delayed cell cycle withdrawal by maintaining AP-1-dependent expression of cyclin D1 in low serum conditions. In cycling cells, the effects of Nox1 were dose dependent: levels of Nox1 that induced 3- to 10-fold increases in ROS promoted phosphorylation of ERK1/2 and expression of cyclin D1, whereas expression of Nox1 with Noxo1 and Noxa1 (or expression of Nox4 alone) that induced substantial increases in intracellular ROS inhibited cyclin D1 and proliferation. Catalase reversed the effects of Nox1 on cyclin D1 and cell proliferation. Diphenylene iodonium, an inhibitor of NADPH oxidase activity, did not affect dosedependent responses of ERK1/2 or Akt to serum, but markedly inhibited the sequential expression of c-Fos and Fra-1 required for induction of cyclin D1 during cell cycle re-entry. These results indicate that Nox1 stimulates cell proliferation in actively cycling cells by reducing the requirement for growth factors to maintain expression of cyclin D1, whereas during cell cycle re-entry, NADPH oxidase activity is required for transcriptional activation of Fos family genes during the immediate early gene response.
Calcium has been implicated in regulating vesicle fusion reactions, but its potential role in regulating other aspects of protein transport, such as vesicle assembly, is largely unexplored. We find that treating cells with the membrane-permeable calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), leads to a dramatic redistribution of the vesicle coat protein, coatomer, in the cell. We have used the cell-free reconstitution of coatprotomer I (COPI) vesicle assembly to characterize the mechanisms of this redistribution. We find that the recovery of COPI-coated Golgi vesicles is inhibited by the addition of BAPTA to the cell-free vesicle budding assay. When coatomer-coated membranes are incubated in the presence of calcium chelators, the membranes "uncoat," indicating that calcium is necessary for maintaining the integrity of the coat. This uncoating is reversed by the addition of calcium. Interestingly, BAPTA, a calcium chelator with fast binding kinetics, is more potent at uncoating the coatomer-coated membrane than EGTA, suggesting that a calcium transient or a calcium gradient is important for stabilizing COPI vesicle coat. The primary target for the effects of calcium on coatomer recruitment is a step that occurs after ADP-ribosylation factor binding to the membrane. We suggest that a calcium gradient may serve to regulate the timing of vesicle uncoating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.