In this paper we propose and analyze an energy stable numerical scheme for the Cahn-Hilliard equation, with second order accuracy in time and the fourth order finite difference approximation in space. In particular, the truncation error for the long stencil fourth order finite difference approximation, over a uniform numerical grid with a periodic boundary condition, is analyzed, via the help of discrete Fourier analysis instead of the the standard Taylor expansion. This in turn results in a reduced regularity requirement for the test function. In the temporal approximation, we apply a second order BDF stencil, combined with a second order extrapolation formula applied to the concave diffusion term, as well as a second order artificial Douglas-Dupont regularization term, for the sake of energy stability. As a result, the unique solvability, energy stability are established for the proposed numerical scheme, and an optimal rate convergence analysis is derived in the ∞ (0, T ; 2 ) ∩ 2 (0, T ; H 2 h ) norm. A few numerical experiments are presented, which confirm the robustness and accuracy of the proposed scheme.Key words. Cahn-Hilliard equation, long stencil fourth order finite difference approximation, second order accuracy in time, energy stability, optimal rate convergence analysis, preconditioned steepest descent iteration
In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second-order time-stepping for the numerical solution of the "good" Boussinesq equation
In this paper we propose and analyze an energy stable numerical scheme for the square phase field crystal (SPFC) equation, a gradient flow modeling crystal dynamics at the atomic scale in space but on diffusive scales in time. In particular, a modification of the free energy potential to the standard phase field crystal model leads to a composition of the 4-Laplacian and the regular Laplacian operators. To overcome the difficulties associated with this highly nonlinear operator, we design numerical algorithms based on the structures of the individual energy terms. A Fourier pseudo-spectral approximation is taken in space, in such a way that the energy structure is respected, and summation-by-parts formulae enable us to study the discrete energy stability for such a high-order spatial discretization. In the temporal approximation, a second order BDF stencil is applied, combined with an appropriate extrapolation for the concave diffusion term(s). A second order artificial Douglas-Dupont-type regularization term is added to ensure energy stability, and a careful analysis leads to the artificial linear diffusion coming at an order lower that that of surface diffusion term. Such a choice leads to reduced numerical dissipation. At a theoretical level, the unique solvability, energy stability are established, and an optimal rate convergence analysis is derived in the ∞ (0, T ; 2 ) ∩ 2 (0, T ; H 3 N ) norm. In the numerical implementation, the preconditioned steepest descent (PSD) iteration is applied to solve for the composition of the highly nonlinear 4-Laplacian term and the standard Laplacian term, and a geometric convergence is assured for such an iteration. Finally, a few numerical experiments are presented, which confirm the robustness and accuracy of the proposed scheme.
In this paper we propose and analyze a (temporally) third order accurate exponential time differencing (ETD) numerical scheme for the no-slope-selection (NSS) equation of the epitaxial thin film growth model, with Fourier pseudo-spectral discretization in space. A linear splitting is applied to the physical model, and an ETD-based multistep approximation is used for time integration of the corresponding equation. In addition, a third order accurate Douglas-Dupont regularization term, in the form of −A∆t 2 φ 0 (L N )∆ 2 N (u n+1 − u n ), is added in the numerical scheme. A careful Fourier eigenvalue analysis results in the energy stability in a modified version, and a theoretical justification of the coefficient A becomes available. As a result of this energy stability analysis, a uniform in time bound of the numerical energy is obtained. And also, the optimal rate convergence analysis and error estimate are derived in details, in the ℓ ∞ (0, T ; H 1 h )∩ℓ 2 (0, T ; H 3 h ) norm, with the help of a careful eigenvalue bound estimate, combined with the nonlinear analysis for the NSS model. This convergence estimate is the first such result for a third order accurate scheme for a gradient flow. Some numerical simulation results are presented to demonstrate the efficiency of the numerical scheme and the third order convergence. The long time simulation results for ε = 0.02 (up to T = 3 × 10 5 ) have indicated a logarithm law for the energy decay, as well as the power laws for growth of the surface roughness and the mound width. In particular, the power index for the surface roughness and the mound width growth, created by the third order numerical scheme, is more accurate than those produced by certain second order energy stable schemes in the existing literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.