Extendable blade sections are investigated as a method for reducing rotor power and improving helicopter performance. A validated helicopter power prediction method, based on an elastic beam model is utilized. The static extendable chord can deliver a rather small power reduction in hover, and significant power savings at high speed flight, however, the cruise power is increased. In hover, the active chord is best deployed in the middle part of the blade, and just inboard of the tip at high speed flight. The increase in chord length can lead to power savings at high speed flight but the benefits decrease in other speeds. The 1/rev dynamically extendable chord can lead to an overall power reduction over the speed range of a helicopter. The best deployment location is at the blade tip, which is different from the statically extendable chord. It is best extended out in the retreating side, and retracted back in the advancing. The power reduction by the 1/rev dynamically extendable chord increases with the increase in the length of the chord extension and takeoff weight of the helicopter. Generally, a lower harmonic extendable chord can save more power than one actuated at higher harmonics. The dynamic chord can reduce more power than the corresponding static chord.
To investigate the potential of Statically and Dynamically Extendable Chord (SEC/DEC) in performance improvement of helicopter tail rotors, a prediction model of helicopter flight performance is developed and validated. It is suitable to deploy the SEC and DEC close to the blade tip for power reduction of tail rotor in hover and high-speed flight. The deployment locations of SEC and DEC for tail rotors are similar to that of main rotors. In hover, the deployment of the SEC and DEC results in little power reduction. From low to medium speed flight, the deployment of the DEC and SEC increases the power. In high-speed flight, the SEC and DEC can significantly decrease the power, especially at a large take-off weight. At 300 km/h, when the chord extension is 20% of blade chord, the SEC and DEC with 1/rev input decrease the power by 14.44% and 20.47% at a take-off weight coefficient of 0.0091. The DEC shows greater potential in power reduction than the SEC. There is an optimal phase input for the maximum power reduction, which does not vary with forward speed. For the DEC with 1/rev input, the optimal phase is [Formula: see text]. The optimal phase input for the maximum power reduction of tail rotors is different from that of main rotors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.