The inherent atomistic precision of synthetic chemistry enables bottom-up structural control over quantum bits, or qubits, for quantum technologies. Tuning paramagnetic molecular qubits that feature optical-spin initialization and readout is a crucial step toward designing bespoke qubits for applications in quantum sensing, networking, and computing. Here, we demonstrate that the electronic structure that enables optical-spin initialization and readout for S = 1, Cr(aryl) 4 , where aryl = 2,4dimethylphenyl (1), o-tolyl (2), and 2,3-dimethylphenyl (3), is readily translated into Cr(alkyl) 4 compounds, where alkyl = 2,2,2triphenylethyl (4), (trimethylsilyl)methyl ( 5), and cyclohexyl (6). The small ground state zero field splitting values (<5 GHz) for 1− 6 allowed for coherent spin manipulation at X-band microwave frequency, enabling temperature-, concentration-, and orientation-dependent investigations of the spin dynamics. Electronic absorption and emission spectroscopy confirmed the desired electronic structures for 4−6, which exhibit photoluminescence from 897 to 923 nm, while theoretical calculations elucidated the varied bonding interactions of the aryl and alkyl Cr 4+ compounds. The combined experimental and theoretical comparison of Cr(aryl) 4 and Cr(alkyl) 4 systems illustrates the impact of the ligand field on both the ground state spin structure and excited state manifold, laying the groundwork for the design of structurally precise optically addressable molecular qubits.
Organic diradicals are uncommon species that have been intensely studied for their unique properties and potential applicability in a diverse range of innovative fields. While there is a growing class of stable and well characterized organic diradicals, there has been recent focus on how diradical character can be controlled or modulated with external stimuli. Here we demonstrate that a diiron complex bridged by the doubly oxidized ligand tetrathiafulvalene-2,3,6,7tetrathiolate (TTFtt 2−) undergoes a thermally induced Fe-centered spin-crossover which yields significant diradical character on TTFtt 2−. UV-vis-Near-IR, Mössbauer, NMR, and EPR spectroscopies with magnetometry, crystallography, and advanced theoretical treatments suggest that this diradical character arises from a shrinking TTFtt 2− π-manifold from the Fe(II)-centered spin-crossover. The TTFtt 2− centered diradical is predicted to have a singlet ground state by theory and variable temperature EPR. This unusual phenomenon demonstrates that inorganic spin transitions can be used to modulate organic diradical character. Results and Discussion Synthesis and Structural Parameters Complex 1 was synthesized via reaction with the deprotected proligand 2,3,6,7-tetrakis(2cyanoethylthio)tetrathiafulvalene (TTFtt(C2H4CN)4) in good yield. Complex 1 was insoluble in all solvents we investigated which precluded detailed characterization but is pure as indicated by combustion analysis and behaves as a suitable synthon for subsequent chemistry. Complex 1 can be doubly oxidized with [Cp2Fe][BAr F 4] to form 2 which is more soluble, enabling common solution characterization including 1 H NMR and cyclic voltammetry measurements (Figure S1-S2). Oxidation from 1 to 2 could be ligandcentered (TTFtt 4− →TTFtt 2−), metal-centered (2 Fe(II)→2 Fe(III)), or some intermediate case, but the data acquired for 2 supports a TTFtt 2− structure arising from ligandcentered oxidation (Chart 1B, see below). Compound 2 was structurally characterized via singlecrystal X-ray diffraction (SXRD) at 293 K (2-HT; Figure S3) and 100 K (2-LT; Figure 1). In both structures TTFtt 2− is bridged between two TPA-capped Fe centers with two outer-sphere BAr F 4 − counter anions. The most striking difference between these temperatures is markedly longer Fe bond lengths in 2-HT. The Fe-Npyridine and Fe-Namine bond lengths in 2-LT are 1.958(6)-1.979(6) and 2.017(6) Å (Figure 1), respectively. These values are consistent with Fe-N bonds in other low-spin complexes with a Fe-TPA moiety. 16,17 In 2-HT, these bonds are 0.18-0.19 and 0.244(11) Å longer than their counterparts at 100 K, respectively, and are consistent with high-spin Fe-TPA complexes. The shorter Fe bonds at lower temperature indicate that 2 exhibits a temperature dependent spincrossover as observed in related compounds. 16,21
A new complex, [Ru(tpy)(dppn)(Cbz-Leu-NHCH2CN)]2+ (1, tpy = 2,2':6',2''-terpyridine, dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) was synthesized and its photochemical properties were investigated. This complex undergoes photorelease of the Cbz-Leu-NHCH2CN ligand, a known cathepsin K inhibitor, with a quantum yield, Φ450, of 0.0012(4) in water (λirr = 450 nm). In addition, 1 sensitizes the production of singlet oxygen upon visible light irradiation with quantum yield, ΦΔ, of 0.64(3) in CH3OH. The photophysical properties of 1 were compared with those of [Ru(tpy)(bpy)(Cbz-Leu-NHCH2CN)]2+ (2, bpy = 2,2'-bipyridine), [Ru(tpy)(dppn)(CH3CN)]2+ (3), and [Ru(tpy)(bpy)(CH3CN)]2+ (4) to evaluate the effect of the release of the Cbz-Leu-NHCH2CN inhibitor relative to the CH3CN ligand, as well as the role of dppn as the bidentate ligand for 1O2 production instead of bpy. Nanosecond transient absorption spectroscopy confirms the formation of the long-lived dppn-centered 3ππ* state in 1 and 3 with a maximum at ∼540 nm and τ ∼20 μs in deaerated acetonitrile. Complexes 1 and 3 are able to cause photoinduced damage to DNA (λirr ≥ 395 nm), whereas 2 and 4 do not photocleave DNA under similar experimental conditions. These results suggest that 1 is a promising agent for dual activity, both releasing a drug and producing singlet oxygen, and is poised to exhibit enhanced biological activity in phototochemotherapy upon irradiation with visible light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.