Nanometer-thin sheets of 2D Ti3C2Tx (MXene) have been assembled into freestanding or supported membranes for the charge- and size-selective rejection of ions and molecules. MXene membranes with controllable thicknesses ranging from hundreds of nanometers to several micrometers exhibited flexibility, high mechanical strength, hydrophilic surfaces, and electrical conductivity that render them promising for separation applications. Micrometer-thick MXene membranes demonstrated ultrafast water flux of 37.4 L/(Bar·h·m(2)) and differential sieving of salts depending on both the hydration radius and charge of the ions. Cations with a larger charge and hydration radii smaller than the interlayer spacing of MXene (∼6 Å) demonstrate an order of magnitude slower permeation compared to single-charged cations. Our findings may open a door for developing efficient and highly selective separation membranes from 2D carbides.
is a garnet-type material that demonstrates promising characteristics for all-solid-state battery applications due to its high Li-ion conductivity and its compatibility with Li metal. The primary limitation of LLZO is the propensity for short-circuiting at low current densities. Microstructure features such as grain boundaries, pore character, and density all contribute to this shorting phenomenon. Toward the goal of understanding processing-structure relationships for practical design of solid electrolytes, the present study tracks structural transformations in solid electrolytes processed at three different temperatures (1050, 1100, and 1150 °C) using synchrotron X-ray tomography. A subvolume of 300 μm 3 captures the heterogeneity of the solid electrolyte microstructure while minimizing the computational intensity associated with 3D reconstructions. While the porosity decreases with increasing temperature, the underlying connectivity of the pore region increases. Solid electrolytes with interconnected pores short circuit at lower critical current densities than samples with less connected pores.
In
this Perspective, we highlight recent progress and challenges
related to the integration of lithium metal anodes in solid-state
batteries. While prior reports have suggested that solid electrolytes
may be impermeable to lithium metal, this hypothesis has been disproven
under a variety of electrolyte compositions and cycling conditions.
Herein, we describe the mechanistic origins and importance of lithium
filament growth and interphase formation in inorganic and organic
solid electrolytes. Multimodal techniques that combine real and reciprocal
space imaging and modeling will be necessary to fully understand nonequilibrium
dynamics at these buried interfaces. Currently, most studies on lithium
electrode kinetics at solid electrolyte interfaces are completed in
symmetric Li–Li configurations. To fully understand the challenges
and opportunities afforded by Li-metal anodes, full-cell experiments
are necessary. Finally, the impacts of operating conditions on solid-state
batteries are largely unknown with respect to pressure, geometry,
and break-in protocols. Given the rapid growth of this community and
the diverse portfolio of solid electrolytes, we highlight the need
for detailed reporting of experimental conditions and standardization
of protocols across the community.
Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.