Cholecystokinin (CCK) is a satiety hormone that is highly expressed in brain regions like the hippocampus. CCK is integral for maintaining or enhancing memory, and thus may be a useful marker of cognitive and neural integrity in participants with normal cognition, mild cognitive mpairment (MCI), and Alzheimer's disease (AD). CSF CCK levels were examined in 287 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Linear or voxel-wise regression was used to examine associations between CCK, regional gray matter (GM), CSF AD biomarkers, and cognitive outcomes. Briefly, higher CCK was related to a decreased likelihood of having MCI or AD, better global and memory scores, and more GM volume primarily spanning posterior cingulate cortex, parahippocampal gyrus, and medial prefrontal cortex. CSF CCK was also strongly related to higher CSF total tau (R2=0.339) and p-tau181 (R2=0.240), but not Aβ1-42. Tau levels partially mediated CCK and cognition associations. In conclusion, CCK levels may reflect compensatory protection as AD pathology progresses.
Background Obesity and insulin resistance are associated with neuropathology and cognitive decline in Alzheimer’s disease (AD). Objective Ecto-nucleotide pyrophosphatase/phosphodiesterase 2, also called autotaxin, is produced by beige adipose tissue, regulates metabolism, and is higher in AD prefrontal cortex (PFC). Autotaxin may be a novel biomarker of dysmetabolism and AD. Methods We studied Alzheimer’s Disease Neuroimaging Initiative participants who were cognitively normal (CN; n=86) or had mild cognitive impairment (MCI; n=135) or AD (n=66). Statistical analyses were conducted using SPSS software. Multinomial regression analyses tested if higher autotaxin was associated with higher relative risk for MCI or AD diagnosis, compared to the CN group. Linear mixed model analyses were used to regress autotaxin against MRI, FDG-PET, and cognitive outcomes. Spearman correlations were used to associate autotaxin and CSF biomarkers due to non-normality. FreeSurfer 4.3 derived mean cortical thickness in medial temporal lobe and prefrontal regions of interest. Results Autotaxin levels were significantly higher in MCI and AD. Each point increase in log-based autotaxin corresponded to a 3.5 to 5 times higher likelihood of having MCI and AD, respectively. Higher autotaxin in AD predicted hypometabolism in the medial temporal lobe [R2=0.343, p<0.001] and PFC [R2=0.294, p<0.001], and worse performance on executive function and memory factors. Autotaxin was associated with less cortical thickness in PFC areas like orbitofrontal cortex [R2=0.272, p<0.001], as well as levels of total tau, p-tau181, and total tau/Aβ1–42. Conclusions These results are comparable to previous reports using insulin resistance. CSF autotaxin may be a useful dysmetabolism biomarker for examining AD outcomes and risk.
Background/Objective Insulin-like growth factor binding protein 2 (IGFBP-2) regulates blood glucose levels, facilitates hippocampal synaptic plasticity and may have a predictive value for Alzheimer’s disease (AD) diagnosis. Methods IGFBP-2 levels were studied in plasma in 566 subjects and in cerebrospinal fluid (CSF) in 245 subjects across the AD spectrum from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Variants in the IGFBP-2 gene were examined. Linear mixed modeling in SPSS tested main effects of IGFBP-2 and interactions with APOE4 on neurocognitive indices and biomarkers. Voxel-wise regression was used to gauge IGFBP-2 and regional gray matter and glucose metabolism associations. Results Each point increase in IGFBP-2 corresponded to a 3 times greater likelihood of having mild cognitive impairment (MCI) or AD. IGFBP-2 showed beneficial associations with respect to cognitive scores in individuals with two APOE4 alleles. Higher IGFBP-2 predicted higher insulin resistance, but not CSF amyloid or tau. Voxel-wise analyses showed that plasma IGFBP-2 predicted lower grey matter volume and FDG metabolism in a large area spanning the frontal, temporal, and occipital lobes. CSF IGFBP-2 levels showed similar voxel-wise analysis results, but were uniquely associated with CSF amyloid and tau. Analysis of single nucleotide polymorphisms (SNPs) in IGFBP-2 showed that subjects carrying risk alleles versus common alleles had increased risk of AD and lower memory scores. Voxel-wise analyses of these SNPs also implicated the hippocampus and prefrontal cortex. Conclusions IGFBP-2 is associated with AD risk and outcomes; plasma IGFBP-2 provides stronger predictive power for brain outcomes, while CSF IGFBP-2 provides improved predictive accuracy for AD CSF biomarkers.
Introduction Glucose hypometabolism and tau formation are key features of Alzheimer's disease (AD). Less is known about the relationship between fasting glucose and regional tau accumulation. Methods Cerebrospinal fluid (CSF) glucose was linearly regressed on regional tau (flortaucipir) among 169 Alzheimer's Disease Neuroimaging Initiative (ADNI3) participants. Flortaucipir uptake was examined by Braak stages and regions of interest (ROIs). Interactions were explored between CSF glucose and AD risk factors including regional amyloid beta (Aβ), sex, Apolipoprotein E ε4 ( APOE ε4) status, AD parental family history (AD FH), and cognitive impairment (CI). Results Interactions found higher CSF glucose tracked less tau in ROIs or Braak stages I/II (women, APOE ε4+, regional Aβ), III/IV (AD FH+, regional Aβ), and V/VI (AD FH+). CI drove Braak III‐VI associations. Discussion Among women and APOE ε4 carriers, higher CSF glucose tracked less early‐stage tau. Higher CSF glucose may reflect compensation against tau spreading in CI, Aβ+, or AD FH+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.