The L-isoaspartyl protein carboxyl methyltransferase (PCM) repairs protein damage resulting from spontaneous conversion of aspartyl or asparaginyl residues to isoaspartate and increases long-term stationary-phase survival of Escherichia coli under stress. In the course of studies intended to examine PCM function in metabolically inactive cells, we identified pcm as a gene whose mutation influences the formation of ofloxacin-tolerant persisters. Specifically, a ⌬pcm mutant produced persisters for an extended period in stationary phase, and a ⌬glpD mutation drastically increased persisters in a ⌬pcm background, reaching 23% of viable cells. The high-persister double mutant showed much higher competitive fitness than the pcm mutant in competition with wild type during long-term stationary phase, suggesting a link between persistence and the mitigation of unrepaired protein damage. We hypothesized that reduced metabolism in the high-persister strain might retard protein damage but observed no gross differences in metabolism relative to wild-type or single-mutant strains. However, methylglyoxal, which accumulates in glpD mutants, also increased fitness, suggesting a possible mechanism. High-level persister formation in the ⌬pcm ⌬glpD mutant was dependent on guanosine pentaphosphate [(p)ppGpp] and polyphosphate. In contrast, persister formation in the ⌬pcm mutant was (p)ppGpp independent and thus may occur by a distinct pathway. We also observed an increase in conformationally unstable proteins in the high-persister strain and discuss this as a possible trigger for persistence as a response to unrepaired protein damage. IMPORTANCEProtein damage is an important factor in the survival and function of cells and organisms. One specific form of protein damage, the formation of the abnormal amino acid isoaspartate, can be repaired by a nearly universally conserved enzyme, PCM. PCMdirected repair is associated with stress survival and longevity in bacteria, insects, worms, plants, mice, and humans, but much remains to be learned about the specific effects of protein damage and repair. This paper identifies an unexpected connection between isoaspartyl protein damage and persisters, subpopulations in bacterial cultures showing increased tolerance to antibiotics. In the absence of PCM, the persister population in Escherichia coli bacteria increased, especially if the metabolic gene glpD was also mutated. High levels of persisters in pcm glpD double mutants correlated with increased fitness of the bacteria in a competition assay, and the fitness was dependent on the signal molecule (p)ppGpp; this may represent an alternative pathway for responding to protein damage. I soaspartyl damage to proteins occurs when aspartyl or asparaginyl residues spontaneously isomerize via a succinimide intermediate (1) (Fig. 1), adversely affecting protein function (2). The damage can be repaired when the abnormal isoaspartyl (isoAsp) residue is recognized and methylated by the L-isoaspartyl protein carboxyl methyltransferase (PCM) (Fig. 1)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.