In the mouse accessory olfactory bulb (AOB), inhibitory interneurons play an essential role in gating behaviors elicited by sensory exposure to social odors. Several morphological classes have been described, but the full complement of interneurons remains incomplete. In order to develop a more comprehensive view of interneuron function in the AOB, we performed targeted patch clamp recordings from partially overlapping subsets of genetically labeled and morphologically defined interneuron types. Gad2 (GAD65), Calb2 (calretinin), and Cort (cortistatin)-cre mouse lines were used to drive selective expression of tdTomato in AOB interneurons. Gad2 and Calb2- labeled interneurons were found in the internal, external, and glomerular (GL) layers, whereas Cort -labeled interneurons were enriched within the lateral olfactory tract (LOT) and external cellular layer (ECL). We found that external granule cells (EGCs) from all genetically labeled subpopulations possessed intrinsic functional differences that allowed them to be readily distinguished from internal granule cells (IGCs). EGCs showed stronger voltage-gated Na + and non-inactivating voltage-gated K + currents, decreased I H currents, and robust excitatory synaptic input. These specific intrinsic properties did not correspond to any genetically labeled type, suggesting that transcriptional heterogeneity among EGCs and IGCs is not correlated with expression of these particular marker genes. Intrinsic heterogeneity was also seen among AOB juxtaglomerular cells (JGCs), with a major subset of Calb2 -labeled JGCs exhibiting spontaneous and depolarization-evoked plateau potentials. These data identify specific physiological features of AOB interneurons types that will assist in future studies of AOB function.
In the mouse accessory olfactory bulb (AOB), inhibitory interneurons play an essential role in gating behaviors elicited by sensory exposure to social odors. Several morphological classes have been described, but the full complement of interneurons remains incomplete. In order to develop a more comprehensive view of interneuron function in the AOB, we performed targeted patch clamp recordings from partially-overlapping subsets of genetically-labeled and morphologically-defined interneuron types. Gad2 (GAD65), Calb2 (calretinin), and Cort (cortistatin)-cre mouse lines were used to drive selective expression of tdTomato in AOB interneurons. Gad2 and Calb2-labeled interneurons were found in the internal, external, and glomerular layers, whereas Cort-labeled interneurons were enriched within the lateral olfactory tract (LOT) and external cellular layer (ECL). We found that external granule cells (EGCs) from all genetically-labeled subpopulations possessed intrinsic functional differences that allowed them to be readily distinguished from internal granule cells (IGCs). EGCs showed stronger voltage-gated Na + and non-inactivating voltage-gated K + currents, decreased I H currents, and robust excitatory synaptic input. These specific intrinsic properties did not correspond to any geneticallylabeled type, suggesting that transcriptional heterogeneity among EGCs and IGCs is not correlated with expression of these particular marker genes. Intrinsic heterogeneity was also seen among AOB juxtaglomerular cells (JGCs), with a major subset of Calb2-labeled JGCs exhibiting spontaneous and depolarization-evoked plateau potentials. These data identify specific physiological features of AOB interneurons types that will assist in future studies of AOB function. Significance Statement:The mouse accessory olfactory bulb (AOB) plays a critical role in processing social chemosensory information. Several morphologically-identified types of AOB inhibitory interneurons are thought to refine and restrict information flow from the AOB to its downstream targets in the limbic system. However, little is known about the electrophysiological and transcriptional diversity among AOB interneuron types. We systematically investigated intrinsic electrophysiological diversity across 5 AOB cell populations in three transgenic mouse lines. Analysis of 26 intrinsic physiological features revealed feature combinations associated with identified morphological AOB cell types, but few associated with the transgenic lines we studied. The results provide quantitative information about functional diversity in AOB interneurons and provide an improved foundation for future studies of AOB circuit function.
Olfactory sensory deprivation induces anosmia and reduces tyrosine hydroxylase and dopamine levels in the olfactory bulb. The behavioral consequences specific to the loss of olfactory bulb dopamine are difficult to determine because sensory deprivation protocols are either confounded by side effects or leave the animal anosmic. A new method to both induce sensory deprivation and to measure the behavioral and circuit consequences is needed. We developed a novel, recoverable anosmia protocol using nasal lavage with a dilute detergent solution. Detergent treatment did not damage the olfactory epithelium as measured by scanning electron microscopy, alcian blue histology, and acetylated tubulin immunohistochemistry. One treatment-induced anosmia that lasted 24 to 48 h. Three treatments over 5 days reduced olfactory bulb tyrosine hydroxylase and dopamine levels indicating that anosmia persists between treatments. Importantly, even with multiple treatments, olfactory ability recovered within 48 h. This is the first report of a sensory deprivation protocol that induces recoverable anosmia and can be paired with biochemical, histological, and behavioral investigations of olfaction.
The accessory olfactory system (AOS) is critical for the development and expression of social behavior. The first dedicated circuit in the AOS, the accessory olfactory bulb (AOB), exhibits cellular and network plasticity in male and female mice after social experience. In the AOB, interneurons called internal granule cells (IGCs) express the plasticity-associated immediate-early geneArcfollowing intermale aggression or mating. Here, we sought to better understand howArc-expressing IGCs shape AOB information processing and social behavior in the context of territorial aggression. We used “ArcTRAP” (Arc-CreERT2) transgenic mice to selectively and permanently labelArc-expressing IGCs following male-male resident-intruder interactions. Using whole-cell patch clamp electrophysiology, we found thatArc-expressing IGCs display increased intrinsic excitability for several days after a single resident-intruder interaction. Further, we found that Arc-expressing IGCs maintain this increased excitability across repeated resident-intruder interactions, during which resident mice increase or “ramp” their aggression. We tested the hypothesis thatArc-expressing IGCs participate in ramping aggression. Using a combination of ArcTRAP mice and chemogenetics (Cre-dependent hM4D(Gi)-mCherry AAV injections), we found that disruption of Arc-expressing IGC activity during repeated resident-intruder interactions abolishes the ramping aggression exhibited by resident male mice. This work shows thatArc-expressing AOB IGC ensembles are activated by specific chemosensory environments, and play an integral role in the establishment and expression of sex-typical social behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.SIGNIFICANCE STATEMENT:The accessory olfactory system (AOS) plays a vital role in rodent chemosensory social behavior. We studied experience-dependent plasticity in the accessory olfactory bulb (AOB) and found that internal granule cells (IGCs) expressing the immediate-early geneArcafter the resident-intruder paradigm increase their excitability for several days. We investigated the roles of these Arc-expressing IGCs on chemosensory social behavior by chemogenetically manipulating their excitability during repeated social interactions. We found that inhibiting these cells eliminated intermale aggressive ramping behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.
Olfactory sensory deprivation induces anosmia and reduces tyrosine hydroxylase and dopamine levels in the olfactory bulb. The behavioral consequences specific to the loss of olfactory bulb dopamine are difficult to determine because sensory deprivation protocols are either confounded by side effects or leave the animal anosmic. A new method to both induce sensory deprivation and to measure the behavioral and circuit consequences is needed. We developed a novel, recoverable anosmia protocol utilizing nasal lavage with a dilute detergent solution. Detergent treatment did not damage the olfactory epithelium as measured by scanning electron microscopy, alcian blue histology, and acetylated tubulin immunohistochemistry. One treatment induced anosmia that lasted 24-48 hours. Lastly, five days of treatment reduced both olfactory bulb tyrosine hydroxylase and dopamine levels which indicates that anosmia persists between treatments. This is the first report of a sensory deprivation protocol that induces recoverable anosmia and can be paired with biochemical, histological, and behavioral investigations of olfaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.