Coseismic temperature rise activates fault dynamic weakening that promotes earthquake rupture propagation. The spatial scales over which peak temperatures vary on slip surfaces are challenging to identify in the rock record. We present microstructural observations and electron backscatter diffraction data from three small‐displacement hematite‐coated fault mirrors (FMs) in the Wasatch fault damage zone, Utah, to evaluate relations between fault properties, strain localization, temperature rise, and weakening mechanisms during FM development. Millimeter‐ to cm‐thick, matrix‐supported, hematite‐cemented breccia is cut by ∼25–200 μm‐thick, texturally heterogeneous veins that form the hematite FM volume (FMV). Grain morphologies and textures vary with FMV thickness over μm to mm lengthscales. Cataclasite grades to ultracataclasite where FMV thickness is greatest. Thinner FMVs and geometric asperities are characterized by particles with subgrains, serrated grain boundaries, and(or) low‐strain polygonal grains that increase in size with proximity to the FM surface. Comparison to prior hematite deformation experiments suggests FM temperatures broadly range from ≥400°C to ≥800–1100°C, compatible with observed coeval brittle and plastic deformation mechanisms, over sub‐mm scales on individual slip surfaces during seismic slip. We present a model of FM development by episodic hematite precipitation, fault reactivation, and strain localization, where the thickness of hematite veins controls the width of the deforming zones during subsequent fault slip, facilitating temperature rise and thermally activated weakening. Our data document intrasample coseismic temperatures, resultant deformation and dynamic weakening mechanisms, and the length scales over which these vary on slip surfaces.
Table S1: Calculations of footwall exhumation and basin extension magnitudes in the western Snake River Plain. Figure S1: Figure illustrating regions of high-elevation, low-relief topography in the southern Idaho batholith.
The western Snake River Plain (WSRP) in southwest Idaho has been characterized as an intracontinental rift basin but differs markedly in topography and style from other Cordilleran extensional structures and structurally from the down-warped lava plain of the eastern Snake River Plain. To investigate mechanisms driving extension and topographic evolution, we sampled granitoid bedrock from Cretaceous and Eocene-aged plutons from the mountainous flanks of the WSRP to detail their exhumation history with apatite (U-Th)/He (AHe) thermochronometry. AHe cooling dates from seventeen samples range from 7.9 ± 1.4 Ma to 55 ± 10 Ma. Most cooling dates from Cretaceous plutons adjacent to the WSRP are Eocene, while Eocene intrusions from within the Middle Fork Boise River canyon ~35 km NE of the WSRP yield Miocene cooling dates. The AHe dates provide evidence of exhumation of the Idaho batholith during the Eocene, supporting a high relief landscape at that time, followed by decreasing relief. The Miocene AHe dates show rapid cooling along the Middle Fork Boise River that we take to indicate focused river incision due to base level fall in the WSRP. Eocene AHe dates limit magnitudes of exhumation and extension on the flanks of the WSRP during Miocene rift formation. This suggests extension was accommodated by magmatic intrusions and intrabasin faults rather than basin-bounding faults. We favor a model where WSRP extension was related to Columbia River Flood Basalt eruption and enhanced by later eruption of the Bruneau-Jarbidge and Twin Falls volcanic fields, explaining the apparent difference with other Cordilleran extensional structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.