.
Significance:
Imaging biofluid flow under physiologic conditions aids in understanding disease processes and health complications. We present a method employing a microparallel plate strain induction chamber (MPPSIC) amenable to optical coherence tomography to track depth-resolved lateral displacement in fluids in real time while under constant and sinusoidal shear.
Aim:
Our objective is to track biofluid motion under shearing conditions found in the respiratory epithelium, first validating methods in Newtonian fluids and subsequently assessing the capability of motion-tracking in bronchial mucus.
Approach:
The motion of polystyrene microspheres in aqueous glycerol is tracked under constant and sinusoidal applied shear rates in the MPPSIC and is compared with theory. Then 1.5 wt. % bronchial mucus samples considered to be in a normal hydrated state are studied under sinusoidal shear rates of amplitudes 0.7 to
.
Results:
Newtonian fluids under low Reynolds conditions (
) exhibit velocity decreases directly proportional to the distance from the plate driven at both constant and oscillating velocities, consistent with Navier–Stokes’s first and second problems at finite depths. A 1.5 wt. % mucus sample also exhibits a uniform shear strain profile.
Conclusions:
The MPPSIC provides a new capability for studying biofluids, such as mucus, to assess potentially non-linear or strain-rate-dependent properties in a regime that is relevant to the mucus layer in the lung epithelium.
We present a micro-parallel plate rheometer amenable to OCT to track depth-resolved lateral displacement in fluids in real-time while under dynamic shear. Newtonian fluid experiments show direct proportionality between lateral velocity of particles and depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.