The EGFR antibody cetuximab is used to treat numerous cancers, but intrinsic and acquired resistance to this agent is a common clinical problem. In this study we show that overexpression of the oncogenic receptor kinase AXL is sufficient to mediate acquired resistance to cetuximab in models of non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC), where AXL was overexpressed, activated and tightly associated with EGFR expression in cells resistant to cetuximab (CtxR cells). Using RNAi methods and novel AXL targeting agents, we found that AXL activation stimulated cell proliferation, EGFR activation and MAPK signaling in CtxR cells. Notably, EGFR directly regulated the expression of AXL mRNA through MAPK signaling and the transcription factor c-Jun in CtxR cells, creating a positive feedback loop that maintained EGFR activation by AXL. Cetuximab-sensitive parental cells were rendered resistant to cetuximab by stable overexpression of AXL or stimulation with EGFR ligands, the latter of which increased AXL activity and association with the EGFR. In tumor xenograft assays, the development of resistance following prolonged treatment with cetuximab was associated with AXL hyperactivation and EGFR association. Furthermore, in an examination of patient-derived xenografts established from surgically resected HNSCCs, AXL was overexpressed and activated in tumors that displayed intrinsic resistance to cetuximab. Collectively, our results identify AXL as a key mediator of cetuximab resistance, providing a rationale for clinical evaluation of AXL targeting drugs to treat cetuximab-resistant cancers.
Purpose Head and neck squamous cell carcinoma (HNSCC) represents the eighth most common malignancy worldwide. Standard of care treatments for HNSCC patients include surgery, radiation and chemotherapy. Additionally, the anti-epidermal growth factor receptor (EGFR) monoclonal antibody cetuximab is often used in combination with these treatment modalities. Despite clinical success with these therapeutics, HNSCC remains a difficult to treat malignancy. Thus, identification of new molecular targets is critical. Experimental Design In the current study, the receptor tyrosine kinase AXL was investigated as a molecular target in HNSCC using established cell lines, HNSCC patient derived xenografts (PDXs), and human tumors. HNSCC dependency on AXL was evaluated with both anti-AXL siRNAs and the small molecule AXL inhibitor R428. Furthermore, AXL inhibition was evaluated with standard of care treatment regimes used in HNSCC. Results AXL was found to be highly overexpressed in several models of HNSCC, where AXL was significantly associated with higher pathologic grade, presence of distant metastases and shorter relapse free survival in patients with HNSCC. Further investigations indicated that HNSCC cells were reliant on AXL for cellular proliferation, migration, and invasion. Additionally, targeting AXL increased HNSCC cell line sensitivity to chemotherapy, cetuximab, and radiation. Moreover, radiation resistant HNSCC cell line xenografts and PDXs expressed elevated levels of both total and activated AXL, indicating a role for AXL in radiation resistance. Conclusion Collectively, this study provides evidence for the role of AXL in HNSCC pathogenesis and supports further pre-clinical and clinical evaluation of anti-AXL therapeutics for the treatment of patients with HNSCC.
Triple-negative breast cancer (TNBC) is a subclass of breast cancers (i.e. estrogen receptor negative, progesterone receptor negative, and HER2 negative) that have poor prognosis and very few identified molecular targets. Strikingly, a high percentage of TNBC’s overexpress the epidermal growth factor receptor (EGFR), yet EGFR inhibition has yielded little clinical benefit. Over the last decade, advances in EGFR biology have established that EGFR functions in two distinct signaling pathways: 1) classical membrane-bound signaling, and 2) nuclear signaling. Previous studies have demonstrated that nuclear EGFR (nEGFR) can enhance resistance to anti-EGFR therapies and is correlated with poor overall survival in breast cancer. Based on these findings we hypothesized that nEGFR may promote intrinsic resistance to cetuximab in TNBC. To examine this question, a battery of TNBC cell lines and human tumors were screened and found to express nEGFR. Knockdown of EGFR expression demonstrated that TNBC cell lines retained dependency on EGFR for proliferation, yet all cell lines were resistant to cetuximab. Further, Src Family Kinases (SFKs) influenced nEGFR translocation in TNBC cell lines and in vivo tumor models, where inhibition of SFK activity led to potent reductions in nEGFR expression. Inhibition of nEGFR translocation led to a subsequent accumulation of EGFR on the plasma membrane, which greatly enhanced sensitivity of TNBC cells to cetuximab. Collectively, these data suggest that targeting both the nEGFR signaling pathway, through the inhibition of its nuclear transport, and the classical EGFR signaling pathway with cetuximab may be a viable approach for the treatment of TNBC patients.
Purpose: People living with HIV are less likely to receive cancer treatment and have worse cancer-specific survival, yet underlying drivers of this disparity have minimally been explored. We investigated cancer care barriers from the perspective of patients living with HIV and cancer (PLWHC) to inform future interventions, reduce disparities, and improve outcomes. Methods: We conducted in-depth semistructured interviews with 27 PLWHC. The interview guide explored perceptions of the cancer care experience, treatment decision making, and barriers to cancer treatment. Interview data were analyzed using the constant comparative method of qualitative analysis. Results: Study participants were predominantly men ( n =22, 81%) with a median age of 56 years and median annual income of $24,000. Among those who experienced challenges with cancer treatment adherence, barriers included debilitating side effects of cancer treatment, stigma surrounding HIV, issues with coping and mental health, the financial burden of cancer care, and challenges with care accessibility. Despite these challenges, participants indicated that their past experiences of coping with HIV had prepared them to accept and address their cancer diagnosis. Resiliency and social support were key facilitators for cancer treatment adherence. Conclusion: This qualitative study of PLWHC in the United States found that a cancer diagnosis created a substantial added stress to an already challenging situation. Health- and stigma-related stressors impacted patients' ability to fully complete cancer treatment as prescribed. There is a need for improved provider communication and mental health support for PLWHC to ensure equitable access to and completion of cancer treatment.
The epidermal growth factor receptor (EGFR) is a therapeutic target in patients with various cancers. Unfortunately, resistance to EGFR-targeted therapeutics is common. Previous studies identified two mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Nuclear translocation of EGFR bypasses the inhibitory effects of cetuximab, and the receptor tyrosine kinase AXL mediates cetuximab resistance by maintaining EGFR activation and downstream signaling. Thus, we hypothesized that AXL mediated the nuclear translocation of EGFR in the setting of cetuximab resistance. Cetuximab-resistant clones of non-small cell lung cancer in culture and patient-derived xenografts in mice had increased abundance of AXL and nuclear EGFR (nEGFR). Cellular fractionation analysis, super-resolution microscopy, and electron microscopy revealed that genetic loss of AXL reduced the accumulation of nEGFR. SRC family kinases (SFKs) and HER family ligands promote the nuclear translocation of EGFR. We found that AXL knockdown reduced the expression of the genes encoding the SFK family members YES and LYN and the ligand neuregulin-1 (NRG1). AXL knockdown also decreased the interaction between EGFR and the related receptor HER3 and accumulation of HER3 in the nucleus. Overexpression of LYN and NRG1 in cells depleted of AXL resulted in accumulation of nEGFR, rescuing the deficit induced by lack of AXL. Collectively, these data uncover a previously unrecognized role for AXL in regulating the nuclear translocation of EGFR and suggest that AXL-mediated SFK and NRG1 expression promote this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.