The development of gene-editing technology holds tremendous potential for accelerating crop trait improvement to help us address the need to feed a growing global population. However, the delivery and access of gene-editing tools to the host genome and subsequent recovery of successfully edited plants form significant bottlenecks in the application of new plant breeding technologies. Moreover, the methods most suited to achieve a desired outcome vary substantially, depending on species' genotype and the targeted genetic changes. Hence, it is of importance to develop and improve multiple strategies for delivery and regeneration in order to be able to approach each application from various angles. The use of transient transformation and regeneration of plant protoplasts is one such strategy that carries unique advantages and challenges. Here, we will discuss the use of protoplast regeneration in the application of new plant breeding technologies and review pertinent literature on successful protoplast regeneration.
Background: Regeneration of fertile plants from tissue culture is a critical bottleneck in the application of new plant breeding technologies. Ectopic overexpression of morphogenic factors is a promising workaround for this hurdle. Methods: Conditional overexpression of WUS and ARF5Δ was used to study the effect of timing the overexpression of these morphogenic factors during shoot regeneration from root explants in Arabidopsis. In addition, their effect on auxin-signaling activation was examined by visualization and cytometric quantification of the DR5:GFP auxin-signaling reporter in roots and protoplasts, respectively. Results: The induced expression of both WUS and ARF5Δ led to an activation of auxin signaling in roots. Activation of auxin signaling by WUS and ARF5Δ was further quantified by transient transformation of protoplasts. Ectopic overexpression of both WUS and ARF5Δ enhanced regeneration efficiency, but only during the shoot-induction stage of regeneration and not during the callus-induction stage. Conclusions: The overexpression of WUS and ARF5Δ both lead to activation of auxin signaling. Expression during the shoot-induction stage is critical for the enhancement of shoot regeneration by WUS and ARF5Δ.
The TARGET system allows for the rapid identification of direct regulated gene targets of transcription factors (TFs). It employs the transient transformation of plant protoplasts with inducible nuclear entry of the TF and subsequent transcriptomic and/or ChIP-seq analysis. The ability to separate direct TF-target gene regulatory interactions from indirect downstream responses and the significantly shorter amount of time required to perform the assay, compared to the generation of transgenics, makes this plant cell-based approach a valuable tool for a higher through-put approach to identify the genome-wide targets of multiple TFs, to build validated transcriptional networks in plants. Here, we describe the use of the TARGET system in Arabidopsis seedling root protoplasts to map the gene regulatory network downstream of transcription factors-of-interest. NB. The original uploaded pdf contained a typo; PEG solution contains 0.4 M mannitol (not 0.4 mM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.