In current practice, radiotherapy inverse planning requires treatment planners to modify multiple parameters in the objective function to produce clinically acceptable plans. Due to the manual steps in this process, plan quality can vary widely depending on the planning time available and the planner's skills. The purpose of this study is to automate the inverse planning process to reduce the planner's active planning time while maintaining plan quality. We propose a hyperparameter tuning approach for automated inverse planning, where a treatment plan utility is maximized with respect to the limit dose parameters and weights of each organ-atrisk (OAR) objective. Using 6 patient cases, we investigated the impact of the choice of dose parameters, random and Bayesian search methods, and utility function form on planning time and plan quality. For given parameters, the plan was optimized in RayStation, using the scripting interface to obtain the dose distributions deliverable. We normalized all plans to have the same target coverage and compared the OAR dose metrics in the automatically generated plans with those in the manually generated clinical plans. Using 100 samples was found to produce satisfactory plan quality, and the average planning time was 2.3 hours. The OAR doses in the automatically generated plans were lower than the clinical plans by up to 76.8%. When the OAR doses were larger than the clinical plans, they were still between 0.57% above and 98.9% below the limit doses, indicating they are clinically acceptable. For a challenging case, a dimensionality reduction strategy produced a 92.9% higher utility using only 38.5% of the time needed to optimize over the original problem. This study demonstrates our hyperparameter tuning framework for automated inverse planning can significantly reduce the treatment planner's planning time with plan quality that is similar to or better than manually generated plans.
There are several different modalities, e.g., surgery, chemotherapy, and radiotherapy, that are currently used to treat cancer. It is common practice to use a combination of these modalities to maximize clinical outcomes, which are often measured by a balance between maximizing tumor damage and minimizing normal tissue side effects due to treatment. However, multi-modality treatment policies are mostly empirical in current practice, and are therefore subject to individual clinicians' experiences and intuition. We present a novel formulation of optimal multi-modality cancer management using a finitehorizon Markov decision process approach. Specifically, at each decision epoch, the clinician chooses an optimal treatment modality based on the patient's observed state, which we define as a combination of tumor progression and normal tissue side effect. Treatment modalities are categorized as (1) Type 1, which has a high risk and high reward, but is restricted in the frequency of administration during a treatment course, (2) Type 2, which has a lower risk and lower reward than Type 1, but may be repeated without restriction, and (3) Type 3, no treatment (surveillance), which has the possibility of reducing normal tissue side effect at the risk of worsening tumor progression. Numerical simulations using various intuitive, concave reward functions show the structural insights of optimal policies and demonstrate the potential applications of using a rigorous approach to optimizing multi-modality cancer management.
Fluence map optimization for intensity-modulated radiation therapy planning can be formulated as a large-scale inverse problem with competing objectives and constraints associated with the tumors and organs at risk. Unfortunately, clinically relevant dose–volume constraints are nonconvex, so standard algorithms for convex problems cannot be directly applied. Although prior work focuses on convex approximations for these constraints, we propose a novel relaxation approach to handle nonconvex dose–volume constraints. We develop efficient, provably convergent algorithms based on partial minimization, and show how to adapt them to handle maximum-dose constraints and infeasible problems. We demonstrate our approach using the CORT data set and show that it is easily adaptable to radiation treatment planning with dose–volume constraints for multiple tumors and organs at risk. Summary of Contribution: This paper proposes a novel approach to deal with dose–volume constraints in radiation treatment planning optimization, which is inherently nonconvex, mixed-integer programming. The authors tackle this NP-hard problem using auxiliary variables and continuous optimization while preserving the problem’s nonconvexity. Algorithms to efficiently solve the nonconvex optimization problem presented in this paper yield computation speeds suitable for a busy clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.