The response of diffuse noxious inhibitory controls (DNIC) is often decreased, or lost, in stress-related functional pain syndromes. Because the dynorphin/kappa opioid receptor (KOR) pathway is activated by stress, we determined its role in DNIC using a model of stress-induced functional pain. Male, Sprague-Dawley rats were primed for 7 days with systemic morphine resulting in opioid-induced hyperalgesia. Fourteen days after priming, when hyperalgesia was resolved, rats were exposed to environmental stress and DNIC was evaluated by measuring hind paw response threshold to noxious pressure (test stimulus) after capsaicin injection in the forepaw (conditioning stimulus). Morphine priming without stress did not alter DNIC. However, stress produced a loss of DNIC in morphine-primed rats in both hind paws that was abolished by systemic administration of the KOR antagonist, nor-binaltorphimine (nor-BNI). Microinjection of nor-BNI into the right, but not left, central nucleus of the amygdala (CeA) prevented the loss of DNIC in morphine-primed rats. Diffuse noxious inhibitory controls were not modulated by bilateral nor-BNI in the rostral ventromedial medulla. Stress increased dynorphin content in both the left and right CeA of primed rats, reaching significance only in the right CeA; no change was observed in the rostral ventromedial medulla or hypothalamus. Although morphine priming alone is not sufficient to influence DNIC, it establishes a state of latent sensitization that amplifies the consequences of stress. After priming, stress-induced dynorphin/KOR signaling from the right CeA inhibits DNIC in both hind paws, likely reflecting enhanced descending facilitation that masks descending inhibition. Kappa opioid receptor antagonists may provide a new therapeutic strategy for stress-related functional pain disorders.
The amygdala is a key subcortical region thought to contribute to emotional components of pain. As opioid receptors are found in both the central (CeA) and basolateral (BLA) nuclei of the amygdala, we investigated the effects of morphine microinjection on evoked pain responses, pain motivated behaviors, dopamine release in the nucleus accumbens (NAc), and descending modulation in rats with left side spinal nerve ligation (SNL). Morphine administered into the right or left CeA had no effect on nerve injury induced tactile allodynia or mechanical hyperalgesia. Right, but not left, CeA morphine produced conditioned place preference (CPP) and increased extracellular dopamine in the NAc selectively in SNL rats, suggesting relief of aversive qualities of ongoing pain. In SNL rats, CPP and NAc dopamine release following right CeA morphine was abolished by blocking mu opioid receptor (MOR) signaling in the rostral A C C E P T E D Copyright Ó 8 8 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited. 2019 3 anterior cingulate cortex (rACC). Right CeA morphine also significantly restored SNL-induced loss of the diffuse noxious inhibitory controls (DNIC), a spino-bulbo-spinal pain modulatory mechanism, termed conditioned pain modulation in humans. Microinjection of morphine into the BLA had no effects on evoked behaviors and did not produce CPP in nerve injured rats. These findings demonstrate that the amygdalar action of morphine is specific to the right CeA contralateral to the side of injury and results in enhancement of net descending inhibition. Additionally, engagement of MORs in the right CeA modulates affective qualities of ongoing pain through endogenous opioid neurotransmission within the rACC, revealing opioid-dependent functional connections from the CeA to the rACC.
Background Loss of conditioned pain modulation/diffuse noxious inhibitory controls has been demonstrated in patients with migraine and medication overuse headache. We hypothesized that exposure to acute migraine medications may lead to dysregulation of central pain modulatory circuits that could be revealed by evaluating diffuse noxious inhibitory controls and that prior noxious stimulus is required for a loss of the diffuse noxious inhibitory control response in rats exposed to these medications. Methods Rats were “primed” by continuous infusion of morphine or one of two doses of sumatriptan. Diffuse noxious inhibitory control was evaluated at the end of drug-priming (day 7) and again after sensory thresholds returned to baseline (day 21). The Randall-Selitto hindpaw pressure test was used as the test stimulus and forepaw capsaicin injection served as the conditioning stimulus. Results Morphine-primed rats showed opioid-induced hyperalgesia accompanied by a loss of diffuse noxious inhibitory controls on day 7. Sumatriptan-primed rats did not develop hyperalgesia or loss of diffuse noxious inhibitory controls on day 7. Morphine-primed and high-dose sumatriptan-primed rats only had a loss of diffuse noxious inhibitory control on day 21 if they received a capsaicin injection on day 7. Conclusions Prolonged exposure to migraine treatments followed by an acute nociceptive stimulation caused long-lasting alterations in descending pain modulation, shown by a loss of diffuse noxious inhibitory controls. Morphine was more detrimental than sumatriptan, consistent with clinical observations of higher medication overuse headache risk with opioids. These data suggest a mechanism of medication overuse headache by which migraine medications combined with repeated episodes of pain may amplify the consequences of nociceptor activation and increase the probability of future migraine attacks as well as risk of medication overuse headache.
Pavlovian eye blink conditioning (EBC) has been extensively studied in humans and laboratory animals, providing one of the best-understood models of learning in neuroscience. EBC has been especially useful in translational studies of cerebellar and hippocampal function. We recently reported a novel extension of EBC procedures for use in sheep, and now describe new advances in a digital video-based system. The system delivers paired presentations of conditioned stimuli (CSs; a tone) and unconditioned stimuli (USs; an air puff to the eye), or CS-alone “unpaired” trials. This system tracks the linear distance between the eyelids to identify blinks occurring as either unconditioned (URs) or conditioned (CRs) responses, to a resolution of 5 ms. A separate software application (Eye Blink Reviewer) is used to review and autoscore the trial CRs and URs, on the basis of a set of predetermined rules, permitting an operator to confirm (or rescore, if needed) the autoscore results, thereby providing quality control for accuracy of scoring. Learning curves may then be quantified in terms of the frequencies of CRs over sessions, both on trials with paired CS–US presentations and on CS-alone trials. The latency to CR onset, latency to CR peak, and occurrence of URs are also obtained. As we demonstrated in two example cases, this video-based system provides efficient automated means to conduct EBC in sheep and can facilitate fully powered studies with multigroup designs that involve paired and unpaired training. This can help extend new studies in sheep, a species well suited for translational studies of neurodevelopmental disorders resulting from gestational exposure to drugs, toxins, or intrauterine distress.
The context in which learning occurs is sufficient to reconsolidate stored memories and neuronal reactivation may be crucial to memory consolidation during sleep. The mechanisms of context-dependent and sleep-dependent memory (re)consolidation are unknown but involve the hippocampus. We simulated memory (re)consolidation using a connectionist model of the hippocampus that explicitly accounted for its dorsoventral organization and for CA1 proximodistal processing. Replicating human and rodent (re)consolidation studies yielded the following results. (1) Semantic overlap between memory items and extraneous learning was necessary to explain experimental data and depended crucially on the recurrent networks of dorsal but not ventral CA3. (2) Stimulus-free, sleep-induced internal reactivations of memory patterns produced heterogeneous recruitment of memory items and protected memories from subsequent interference. These simulations further suggested that the decrease in memory resilience when subjects were not allowed to sleep following learning was primarily due to extraneous learning. (3) Partial exposure to the learning context during simulated sleep (i.e., targeted memory reactivation) uniformly increased memory item reactivation and enhanced subsequent recall. Altogether, these results show that the dorsoventral and proximodistal organization of the hippocampus may be important components of the neural mechanisms for context-based and sleep-based memory (re)consolidations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.