SUMMARYDuring cerebral cortex development, precise control of precursor cell cycle length and cell cycle exit is required for balanced precursor pool expansion and layer-specific neurogenesis. Here, we defined the roles of cyclin-dependent kinase inhibitor (CKI) p57 KIP2 , an important regulator of G1 phase, using deletion mutant mice. Mutant mice displayed macroencephaly associated with cortical hyperplasia during late embryogenesis and postnatal development. Embryonically, proliferation of radial glial cells (RGC) and intermediate precursors (IPC) was increased, expanding both populations, with greater effect on IPCs. Furthermore, cell cycle re-entry was increased during early corticogenesis, whereas cell cycle exit was augmented at middle stage. Consequently, neurogenesis was reduced early, whereas it was enhanced during later development. In agreement, the timetable of early neurogenesis, indicated by birthdating analysis, was delayed. Cell cycle dynamics analyses in mutants indicated that p57 KIP2 regulates cell cycle length in both RGCs and IPCs. By contrast, related CKI p27 KIP1 controlled IPC proliferation exclusively. Furthermore, p57KIP2 deficiency markedly increased RGC and IPC divisions at E14.5, whereas p27 KIP1 increased IPC proliferation at E16.5. Consequently, loss of p57 KIP2 increased primarily layer 5-6 neuron production, whereas loss of p27 KIP1 increased neurons specifically in layers 2-5. In conclusion, our observations suggest that p57 KIP2 and p27 KIP1 control neuronal output for distinct cortical layers by regulating different stages of precursor proliferation, and support a model in which IPCs contribute to both lower and upper layer neuron generation.
The developing brain is particularly sensitive to exposures to environmental contaminants. In contrast to the adult, the developing brain contains large numbers of dividing neuronal precursors, suggesting that they may be vulnerable targets. The postnatal day 7 (P7) rat hippocampus has populations of both mature neurons in the CA1-3 region as well as neural stem cells (NSC) in the dentate gyrus (DG) hilus, that actively produce new neurons that migrate to the granule cell layer (GCL). Using this well-characterized NSC population, we examined the impact of low levels of MeHg on proliferation, neurogenesis, and subsequent adolescent learning and memory behavior. Assessing a range of exposures, we found that a single subcutaneous injection of 0.6μg/g MeHg in P7 rats induced caspase activation in proliferating NSC of the hilus and GCL. This acute NSC death had lasting impact on the DG at P21, reducing cell numbers in the hilus by 22% and the GCL by 27%, as well as reductions in neural precursor proliferation by 25%. In contrast, non-proliferative CA1-3 pyramidal neuron cell number was unchanged. Furthermore, animals exposed to P7 MeHg exhibited an adolescent spatial memory deficit as assessed by Morris water maze. These results suggest that environmentally relevant levels of MeHg exposure may decrease NSC populations and, despite ongoing neurogenesis, the brain may not restore the hippocampal cell deficits, which may contribute to hippocampal-dependent memory deficits during adolescence.
Cetuximab conjugated iron-oxide nanoparticles (cetuximab-IONPs) have shown both in-vitro and in-vivo anti-tumor efficacy against gliomas. The purpose of this pilot study was to evaluate the safety and potential efficacy of cetuximab-IONPs for treatment of spontaneously occurring intracranial gliomas in canines after convection-enhanced delivery (CED). The use of CED allowed for direct infusion of the cetuximab-IONPs both intratumorally and peritumorally avoiding the blood brain barrier (BBB) and limiting systemic effects. A total of eight dogs participated in the study and only two developed mild post-operative complications, which resolved with medical therapy. All canines underwent a single CED treatment of the cetuximab-IONPs over 3 days and did not receive any further adjuvant treatments. Volumetric analysis showed a median reduction in tumor size of 54.9% by MRI at 1-month (4-6 weeks) follow-up. Five dogs were euthanized due to recurrence of neurological signs other than seizures, two due to recurrent seizures, and one dog died in his sleep. Median survival time after surgery was 248 days (mean 367 days).
Idiopathic epilepsy is the most common chronic neurologic condition in dogs. Approximately 20-30% of those dogs are refractory to standard medical therapy and commonly experience side effects from antiepileptic drugs. Non-invasive vagus nerve stimulation (nVNS) has been frequently used in human medicine as an adjunct seizure therapy with low incidence of adverse events. Canine studies are limited to invasive surgical implants with no non-invasive evaluations currently published. We investigated the feasibility and efficacy of nVNS (gammaCore VET) as an adjunct treatment for refractory epilepsy in dogs. In total, 14 client-owned dogs completed the trial of either 8-or 16-week treatment periods during which they received 90-120 s stimulation three times per day in the region of the left cervical vagus nerve. Owners recorded seizure type (focal or generalized) and frequency as well as any adverse effects. Out of 14 dogs, nine achieved a reduction in seizure frequency and four were considered responders with a 50% or greater reduction in seizures from baseline to the final treatment period. However, there was no statistically significant difference in overall seizure frequency (p = 0.53) or percent change in seizure frequency between groups (p = 0.75). Adverse effects occurred in 25% of dogs originally enrolled, with reports of a hoarse bark and limb trembling, lethargy, behavioral changes, and an increase in seizure frequency. Non-invasive VNS was found to be safe and easy to administer with mild adverse events. It is considered a feasible treatment option as an adjunct therapy in refractory seizures and should be further investigated.
Background: The pathophysiology of changes in magnetic resonance imaging (MRI) detected after a seizure is not fully understood. Objective: To characterize and describe seizure-induced changes detected by MRI. Animals: Eighty-one client-owned dogs diagnosed with idiopathic epilepsy. Methods: Data collected retrospectively from medical records and included anatomical areas affected, T1-, T2-weighted and T2-FLAIR (fluid-attenuated inversion recovery) appearance, whether changes were unilateral or bilateral, symmetry, contrast enhancement, mass effect, and, gray and white matter distribution. Diffusion-and perfusion weighted maps were evaluated, if available. Results: Seizure-induced changes were T2-hyperintense with no suppression of signal on FLAIR. Lesions were T1-isointense (55/81) or hypointense (26/81), local mass effect (23/81) and contrast enhancement (12/81). The majority of changes were bilateral (71/81) and symmetrical (69/71). The most common areas affected were the hippocampus (39/81) cingulate gyrus (33/81), hippocampus and piriform lobes (32/81). Distribution analysis suggested concurrence between cingulate gyrus and pulvinar thalamic nuclei, the cingulate gyrus and parahippocampal gyrus, hippocampus and piriform lobe, and, hippocampus and parahippocampal gyrus. Diffusion (DWI) characteristics were a mixed-pattern of restricted, facilitated, and normal diffusion. Perfusion (PWI) showed either hypoperfusion (6/9) or hyperperfusion (3/9). Conclusions and Clinical Importance: More areas, than previously reported, have been identified that could incur seizure-induced changes. Similar to human literature, DWI and PWI changes have been identified that could reflect the underlying metabolic and vascular changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.