Background and Purpose An urgent need exists to develop therapies for stroke which have high efficacy, long therapeutic time windows and acceptable toxicity. We undertook preclinical investigations of a novel therapeutic approach involving supplementation with carnosine, an endogenous pleiotropic dipeptide. Methods Efficacy and safety of carnosine treatment was evaluated in rat models of permanent or transient middle cerebral artery occlusion. Mechanistic studies used primary neuronal/astrocytic cultures and ex vivo brain homogenates. Results Intravenous treatment with carnosine exhibited robust cerebroprotection in a dose-dependent manner, with long clinically-relevant therapeutic time windows of 6 h and 9 h in transient and permanent models, respectively. Histological outcomes and functional improvements including motor and sensory deficits were sustained at 14 d post-stroke onset. In safety and tolerability assessments, carnosine did not exhibit any evidence of adverse effects or toxicity. Moreover, histological evaluation of organs, complete blood count, coagulation tests and the serum chemistry did not reveal any abnormalities. In primary neuronal cell cultures and ex vivo brain homogenates, carnosine exhibited robust anti-excitotoxic, antioxidant, and mitochondria protecting activity. Conclusion In both permanent and transient ischemic models, carnosine treatment exhibited significant cerebroprotection against histological and functional damage, with wide therapeutic and clinically relevant time windows. Carnosine was well tolerated and exhibited no toxicity. Mechanistic data show that it influences multiple deleterious processes. Taken together, our data suggest that this endogenous pleiotropic dipeptide is a strong candidate for further development as a stroke treatment.
Background and Purpose Asiatic acid (AA) has been shown to attenuate cerebral infarction in a mouse model of focal ischemia and shows promise as a neuroprotective stroke therapy. To facilitate translation of these findings to clinical studies, we determined pharmacokinetics, a dose response relationship, the therapeutic time window, and efficacy using multiple stroke models. We also explored potential mechanisms of action. Methods Escalating doses of intravenous AA were administered and serum concentrations were measured at multiple time points for the pharmacokinetic studies. Subsequently, a dose response relationship was determined followed by administration at different intervals after the onset of ischemia to establish a therapeutic time window for neuroprotection. Outcome measurements included both histological and behavioral. Mitochondrial function and matrix metalloproteinase activity in controls and treated rats were also determined. Results The pharmacokinetic studies showed that AA (75mg/kg) has a half life of 2.0 hours. AA significantly decreased infarct volume and improved neurological outcome even when administration at time points up to 12 hours after the onset of ischemia. Infarct volume was also significantly decreased in female rats and spontaneously hypertensive rats. AA attenuated mitochondrial dysfunction and reduced matrix metalloproteinase-9 induction. Conclusions Our study shows AA is effective against multiple models of focal ischemia, has a long therapeutic time window and is also effective in females and hypertensive animals. AA may mediate neuroprotection by protecting mitochondria and inhibiting matrix metalloproteinase-9 induction and activation. Taken together these data suggest that AA is an excellent candidate for development as a stroke therapy based.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.