Current treatment for patients with metastatic melanoma include molecular-targeted therapies and immune checkpoint inhibitors. However, a subset of melanomas are difficult-to-treat. These melanomas include those without the genetic markers for targeted therapy, non-responsive to immunotherapy, and those who have relapsed or exhausted their therapeutic options. Therefore, it is necessary to understand and explore other biological processes that may provide new therapeutic approaches. One of most appealing is targeting the apoptotic/anti-apoptotic system that is effective against leukemia. We used genetic knockdown and pharmacologic approaches of BH3 mimetics to target anti-apoptotic BCL2 family members and identified MCL1 and BCLXL as crucial pro-survival members in melanoma. We then examined the effects of combining BH3 mimetics to target MCL1 and BCLXL in vitro and in vivo. These include clinical-trial-ready compounds such as ABT-263 (Navitoclax) and S63845/S64315 (MIK655). We used cell lines derived from patients with difficult-to-treat melanomas. In vitro, the combined inhibition of MCL1 and BCLXL resulted in significantly effective cell killing compared to single-agent treatment (p < 0.05) in multiple assays, including sphere assays. The combination-induced cell death was independent of BIM, and NOXA. Recapitulated in our mouse xenograft model, the combination inhibited tumor growth, reduced sphere-forming capacity (p < 0.01 and 0.05, respectively), and had tolerable toxicity (p > 0.40). Taken together, this study suggests that dual targeting of MCL1 and BCLXL should be considered as a treatment option for difficult-to-treat melanoma patients.
Immunotherapy, such as anti-PD1, has improved the survival of patients with metastatic melanoma. However, predicting which patients will respond to immunotherapy remains a significant knowledge gap. In this study we analyzed pre-immunotherapy treated tumors from 52 patients with metastatic melanoma and monitored their response based on RECIST 1.1 criteria. The responders group contained 21 patients that had a complete or partial response, while the 31 non-responders had stable or progressive disease. Whole exome sequencing (WES) was used to identify biomarkers of anti-PD1 response from somatic mutations between the two groups. Variants in codons G34 and G41 in NFKBIE, a negative regulator of NFkB, were found exclusively in the responders. Mutations in NKBIE-related genes were also enriched in the responder group compared to the non-responders. Patients that harbored NFKBIE-related gene mutations also had a higher mutational burden, decreased tumor volume with treatment, and increased progression-free survival. RNA sequencing on a subset of tumor samples identified that CD83 was highly expressed in our responder group. Additionally, Gene Set Enrichment Analysis showed that the TNFalpha signaling via NFkB pathway was one of the top pathways with differential expression in responders vs. non-responders. In vitro NFkB activity assays indicated that the G34E variant caused loss-of-function of NFKBIE, and resulted in activation of NFkB signaling. Flow cytometry assays indicated that G34E variant was associated with upregulation of CD83 in human melanoma cell lines. These results suggest that NFkB activation and signaling in tumor cells contributes to a favorable anti-PD1 treatment response, and clinical screening to include aberrations in NFkB-related genes should be considered.
Advanced stages of papillary and anaplastic thyroid cancer continue to be plagued by a dismal prognosis, which is a result of limited effective therapies for these cancers. Due to the high proportion of thyroid cancers harboring mutations in the MAPK pathway, the MAPK pathway has become a focal point for therapeutic intervention in thyroid cancer. Unfortunately, unlike melanoma, a similar responsiveness to MAPK pathway inhibition has yet to be observed in thyroid cancer patients. To address this issue, we have focused on targeting the non-receptor tyrosine kinase, Src, and we and others have demonstrated that targeting Src results in inhibition of growth, invasion, and migration both in vitro and in vivo, which can be enhanced through the combined inhibition of Src and the MAPK pathway. Therefore, we examined the efficacy of the combination therapy across a panel of thyroid cancer cell lines representing common oncogenic drivers (BRAF, RAS, and PIK3CA). Interestingly, combined inhibition of Src and the MAPK pathway overcomes intrinsic dasatinib resistance in cell lines where both the MAPK and PI3K pathways are inhibited, which we show is likely due to the regulation of the PI3K pathway by Src in these responsive cells. Interestingly, we have mapped downstream phosphorylation of rpS6 as a key biomarker of response, and cells that maintain rpS6 phosphorylation likely represent drug tolerant persisters. Altogether, the combined inhibition of Src and the MAPK pathway holds great promise for improving the overall survival of advanced thyroid cancer patients with BRAF and RAS mutations, and activation of the PI3K pathway and rpS6 phosphorylation represent important biomarkers of response for patients treated with this therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.